分形<二>分形的递归算法

这篇博客探讨了递归算法在分形几何中的应用,如canto三分集和Koch妖魔曲线的实现。递归算法虽然简洁,但因其效率低和空间占用问题而不常用于程序设计。文章通过实例展示了如何利用递归生成经典分形图像,并提到了渲染框架中方便绘制几何图形的工具。
摘要由CSDN通过智能技术生成

递归算法是把问题转化为规模缩小了的同类问题的子问题。1)核心的子问题算法。2)递归调用。3)给定递归出口。

递归设计使程序简洁,也体现了设计思路在整体-局部上结合的严谨,但仍不提倡程序设计使用,因为其运行效率低且占用栈的空间问题突出。作为解决思路的一种方式还是具有魅力。

分形的自我相似,自我复制和自我嵌套用递归算法来实现是合适的,事实上经典分形图的绘制大多数可采用递归算法。


一.canto三分集。

**渲染框架上有方便绘制几何图形的ShapeRenderer类,它和Batch画笔都封装了调用底层渲染的接口。

注:**标签的段落无关分形算法,是渲染框架上的一些笔记。


三分集递归算法:

private void canto(int ax,int ay,int bx,int by){
		if((bx-ax)<c){
			renderer.line(ax, ay, bx, by);
		}
		else{
			int cx,cy,dx,dy;
			renderer.line(ax, ay, bx, by);
			cx=ax+(bx-ax)/3;
			cy=ay+50;
			dx=bx-(bx-ax)/3;
			dy=by+50;
			ay=ay+50;
			by=by+50;
			canto(ax,ay,cx,cy);
			canto(dx,dy,bx,by);
		}
	}


效果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值