原根的存在性 几道例题

本文通过一系列例题详细探讨了原根的存在性及其求解方法,涉及模运算、素数、模幂运算等内容。从求解49、487到一般形式的7k、487k的原根,再到模47、25和38的全部原根,文章深入浅出地介绍了如何找到这些数的原根,并提供了具体的计算过程。
摘要由CSDN通过智能技术生成

传送门

本文涉及的主要数论原理参见博文《原根的存在性 相关定理 (一)》, 《原根的存在性 相关定理(二)》.

例题1 求 49 49 49的全部原根.


第一步, 先找出模 7 7 7的所有原根. φ ( 7 ) = 6 \varphi \left( 7 \right)=6 φ(7)=6.
n 1 2 3 4 5 6 2 n     m o d   7 2 4 1 3 n     m o d   7 3 ‾ 2 6 4 5 ‾ 1 \begin{matrix} n & 1 & 2 & 3 & 4 & 5 & 6 \\ { {2}^{n}}\text{ }\bmod 7 & 2 & 4 & 1 & {} & {} & {} \\ { {3}^{n}}\text{ }\bmod 7 & \underline{3} & 2 & 6 & 4 & \underline{5} & 1 \\ \end{matrix} n2n mod73n mod7123242316445561
因此 g = 3 g=3 g=3是模 7 7 7的一个原根. 在模 7 7 7既约剩余系 { 0 , 1 , 2 , ⋯   , 6 } \left\{ 0,1,2,\cdots ,6 \right\} { 0,1,2,,6}中其他所有原根是 3 5   m o d   7 = 5 { {3}^{5}}\bmod 7=5 35mod7=5.

第二步, 考虑模 7 7 7的原根 { x ≡ 3 , 5     m o d   7 :   0 ≤ x < 49 } \left\{ x\equiv 3,5\text{ }\bmod 7:\text{ }0\le x<49 \right\} { x3,5 mod7: 0x<49}, 由二项式定理, 成立
( 3 + 7 i ) 6 ≡ 3 6 + 6 × 3 5 × 7 i ≡ − 6 + 6 × ( − 2 ) × 7 i ≡ − 6 + 14 i     m o d   49 , ( 5 + 7 j ) 6 ≡ 5 6 + 6 × 5 5 × 7 j ≡ − 6 + 28 j     m o d   49. \begin{aligned} & { {\left( 3+7i \right)}^{6}}\equiv { {3}^{6}}+6\times { {3}^{5}}\times 7i\equiv -6+6\times \left( -2 \right)\times 7i\equiv -6+14i\text{ }\bmod 49, \\ & { {\left( 5+7j \right)}^{6}}\equiv { {5}^{6}}+6\times { {5}^{5}}\times 7j\equiv -6+28j\text{ }\bmod 49. \\ \end{aligned} (3+7i)636+6×35×7i6+6×(2)×7i6+14i mod49,(5+7j)656+6×55×7j6+28j mod49.
计算得下表
r ≡ 3     m o d   7 3 10 17 24 31 38 45 r 7 − 1     m o d   49 − 6 8 22 36 1 ‾ 15 29 r ≡ 5     m o d   7 5 12 19 26 33 40 47 r 7 − 1     m o d   49 − 6 22 1 ‾ 29 8 36 13 \begin{aligned} & \begin{matrix} r\equiv 3\text{ }\bmod 7 & 3 & 10 & 17 & 24 & 31 & 38 & 45 \\ { {r}^{7-1}}\text{ }\bmod 49 & -6 & 8 & 22 & 36 & \underline{1} & 15 & 29 \\ \end{matrix} \\ & \\ & \begin{matrix} r\equiv 5\text{ }\bmod 7 & 5 & 12 & 19 & 26 & 33 & 40 & 47 \\ { {r}^{7-1}}\text{ }\bmod 49 & -6 & 22 & \underline{1} & 29 & 8 & 36 & 13 \\ \end{matrix} \\ \end{aligned} r3 mod7r71 mod49361081722243631138154529r5 mod7r71 mod49561222191262933840364713
表格第一, 三行除了 31 ,   19 31,\text{ }19 31, 19以外, 都是 49 49 49的原根. 故 49 49 49的全部原根是 x ≡ x 0     m o d   49 x\equiv { {x}_{0}}\text{ }\bmod 49 xx0 mod49, x 0 = 3 , 5 , 10 , 12 , 17 , 24 , 26 , 33 , 38 , 40 , 45 , 47 { {x}_{0}}=3, 5, 10, 12, 17, 24, 26, 33, 38, 40, 45, 47 x0=3,5,10,12,17,24,26,33,38,40,45,47.

例题2 已知 487 487 487是素数, 有原根 10 10 10. 找一个 487 2 { {487}^{2}} 4872的原根.

487 2 = 237169 { {487}^{2}}=237169 4872=237169, 由于
10 487 − 1     m o d   237169 = 10 486 = 10 7 × 69 + 3 = ( 10 7 ) 69 × 1000 ≡ 38902 69 × 1000 = 1513365604 34 × 38902000 ≡ ( − 9785 ) 34 × 6284 = 95746225 17 × 6284 ≡ 167118 17 × 6284 = 27928425924 8 × 1050169512 ≡ 115991 8 × ( − 14820 ) = 13453912081 4 × ( − 14820 ) ≡ 26218 4 × ( − 14820 ) = 687383524 2 × ( − 14820 ) ≡ 67762 2 × ( − 14820 ) = 4591688644 × ( − 14820 ) ≡ 96804 × ( − 14820 ) = − 1434635280 ≡ 1     m o d   237169. \begin{aligned} & { {10}^{487-1}}\text{ }\bmod 237169 \\ & ={ {10}^{486}}={ {10}^{7\times 69+3}}={ {\left( { {10}^{7}} \right)}^{69}}\times 1000\equiv { {38902}^{69}}\times 1000 \\ & ={ {1513365604}^{34}}\times 38902000\equiv { {\left( -9785 \right)}^{34}}\times 6284={ {95746225}^{17}}\times 6284 \\ & \equiv { {167118}^{17}}\times 6284={ {27928425924}^{8}}\times 1050169512\equiv { {115991}^{8}}\times \left( -14820 \right) \\ & ={ {13453912081}^{4}}\times \left( -14820 \right)\equiv { {26218}^{4}}\times \left( -14820 \right) \\ & ={ {687383524}^{2}}\times \left( -14820 \right)\equiv { {67762}^{2}}\times \left( -14820 \right) \\ & =4591688644\times \left( -14820 \right)\equiv 96804\times \left( -14820 \right) \\ & =-1434635280 \\ & \equiv 1\text{ }\bmod 237169. \\ \end{aligned} 104871 mod237169=10486=107×69+3=(107)69×10003890269×1000=151336560434×38902000(9785)34×6284=9574622517×628416711817×6284=279284259248×10501695121159918×(14820)=134539120814×(14820)262184×(14820)=6873835242×(14820)677622×(14820)=4591688644×(14820)96804×(14820)=14346352801 mod237169.
因此 487 2 = 237169 { {487}^{2}}=237169 4872=237169有原根 10 + 487 = 497 10+487=497 10+487=497.

例题3 对所有 k ∈ Z > 0 k\in { {\mathbb{Z}}_{>0}} kZ>0, 找一个 7 k { {7}^{k}} 7k的原根.

 由例题1, 3 ,   5 3,\text{ }5 3, 5既是模 7 7 7的原根, 又是模 7 2 { {7}^{2}} 72的原根. 因此 ∀ k ∈ Z > 0 \forall k\in { {\mathbb{Z}}_{>0}} kZ>0, 3 ,  5 3,\text{ 5} 3, 5是模 7 k { {7}^{k}} 7k的原根.

例题4 对所有 k ∈ Z > 0 k\in { {\mathbb{Z}}_{>0}} kZ>0, 找一个 487 k { {487}^{k}} 487k的原根.

 由例题2, 497 ≡ 10     m o d   487 497\equiv 10\text{ }\bmod 487 49710 mod487既是模 487 487 487的原根, 也是模 487 2 { {487}^{2}} 4872的原根, 因此 ∀ k ∈ Z > 0 \forall k\in { {\mathbb{Z}}_{>0}} kZ>0, 497 497 497是模 487 k { {487}^{k}} 487k的原根.

例题5 对所有 k ∈ Z > 0 k\in { {\mathbb{Z}}_{>0}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值