索引
- 传送门
- 例题1 求 49 49 49的全部原根.
- 例题2 已知 487 487 487是素数, 有原根 10 10 10. 找一个 487 2 { {487}^{2}} 4872的原根.
- 例题3 对所有 k ∈ Z > 0 k\in { {\mathbb{Z}}_{>0}} k∈Z>0, 找一个 7 k { {7}^{k}} 7k的原根.
- 例题4 对所有 k ∈ Z > 0 k\in { {\mathbb{Z}}_{>0}} k∈Z>0, 找一个 487 k { {487}^{k}} 487k的原根.
- 例题5 对所有 k ∈ Z > 0 k\in { {\mathbb{Z}}_{>0}} k∈Z>0, 找一个 23 k { {23}^{k}} 23k的原根.
- 例题6 对所有 k ∈ Z > 0 k\in { {\mathbb{Z}}_{>0}} k∈Z>0, 找一个 2 × 7 k 2\times { {7}^{k}} 2×7k的原根.
- 例题7 对所有 k ∈ Z > 0 k\in { {\mathbb{Z}}_{>0}} k∈Z>0, 找一个 2 × 5 k 2\times { {5}^{k}} 2×5k的原根. 特别地, 找出 50 50 50的一个原根.
- 例题8 各寻找一个 41 41 41, 41 k { {41}^{k}} 41k, 2 × 41 k 2\times { {41}^{k}} 2×41k的原根.
- 例题9 求出模 47 47 47的全部原根.
- 例题10 求出模 25 25 25的全部原根.
- 例题11 求出模 38 38 38的全部原根.
传送门
本文涉及的主要数论原理参见博文《原根的存在性 相关定理 (一)》, 《原根的存在性 相关定理(二)》.
例题1 求 49 49 49的全部原根.
解
第一步, 先找出模 7 7 7的所有原根. φ ( 7 ) = 6 \varphi \left( 7 \right)=6 φ(7)=6.
n 1 2 3 4 5 6 2 n m o d 7 2 4 1 3 n m o d 7 3 ‾ 2 6 4 5 ‾ 1 \begin{matrix} n & 1 & 2 & 3 & 4 & 5 & 6 \\ {
{2}^{n}}\text{ }\bmod 7 & 2 & 4 & 1 & {} & {} & {} \\ {
{3}^{n}}\text{ }\bmod 7 & \underline{3} & 2 & 6 & 4 & \underline{5} & 1 \\ \end{matrix} n2n mod73n mod7123242316445561
因此 g = 3 g=3 g=3是模 7 7 7的一个原根. 在模 7 7 7既约剩余系 { 0 , 1 , 2 , ⋯ , 6 } \left\{ 0,1,2,\cdots ,6 \right\} {
0,1,2,⋯,6}中其他所有原根是 3 5 m o d 7 = 5 {
{3}^{5}}\bmod 7=5 35mod7=5.
第二步, 考虑模 7 7 7的原根 { x ≡ 3 , 5 m o d 7 : 0 ≤ x < 49 } \left\{ x\equiv 3,5\text{ }\bmod 7:\text{ }0\le x<49 \right\} {
x≡3,5 mod7: 0≤x<49}, 由二项式定理, 成立
( 3 + 7 i ) 6 ≡ 3 6 + 6 × 3 5 × 7 i ≡ − 6 + 6 × ( − 2 ) × 7 i ≡ − 6 + 14 i m o d 49 , ( 5 + 7 j ) 6 ≡ 5 6 + 6 × 5 5 × 7 j ≡ − 6 + 28 j m o d 49. \begin{aligned} & {
{\left( 3+7i \right)}^{6}}\equiv {
{3}^{6}}+6\times {
{3}^{5}}\times 7i\equiv -6+6\times \left( -2 \right)\times 7i\equiv -6+14i\text{ }\bmod 49, \\ & {
{\left( 5+7j \right)}^{6}}\equiv {
{5}^{6}}+6\times {
{5}^{5}}\times 7j\equiv -6+28j\text{ }\bmod 49. \\ \end{aligned} (3+7i)6≡36+6×35×7i≡−6+6×(−2)×7i≡−6+14i mod49,(5+7j)6≡56+6×55×7j≡−6+28j mod49.
计算得下表
r ≡ 3 m o d 7 3 10 17 24 31 38 45 r 7 − 1 m o d 49 − 6 8 22 36 1 ‾ 15 29 r ≡ 5 m o d 7 5 12 19 26 33 40 47 r 7 − 1 m o d 49 − 6 22 1 ‾ 29 8 36 13 \begin{aligned} & \begin{matrix} r\equiv 3\text{ }\bmod 7 & 3 & 10 & 17 & 24 & 31 & 38 & 45 \\ {
{r}^{7-1}}\text{ }\bmod 49 & -6 & 8 & 22 & 36 & \underline{1} & 15 & 29 \\ \end{matrix} \\ & \\ & \begin{matrix} r\equiv 5\text{ }\bmod 7 & 5 & 12 & 19 & 26 & 33 & 40 & 47 \\ {
{r}^{7-1}}\text{ }\bmod 49 & -6 & 22 & \underline{1} & 29 & 8 & 36 & 13 \\ \end{matrix} \\ \end{aligned} r≡3 mod7r7−1 mod493−61081722243631138154529r≡5 mod7r7−1 mod495−61222191262933840364713
表格第一, 三行除了 31 , 19 31,\text{ }19 31, 19以外, 都是 49 49 49的原根. 故 49 49 49的全部原根是 x ≡ x 0 m o d 49 x\equiv {
{x}_{0}}\text{ }\bmod 49 x≡x0 mod49, x 0 = 3 , 5 , 10 , 12 , 17 , 24 , 26 , 33 , 38 , 40 , 45 , 47 {
{x}_{0}}=3, 5, 10, 12, 17, 24, 26, 33, 38, 40, 45, 47 x0=3,5,10,12,17,24,26,33,38,40,45,47.
例题2 已知 487 487 487是素数, 有原根 10 10 10. 找一个 487 2 { {487}^{2}} 4872的原根.
解 487 2 = 237169 {
{487}^{2}}=237169 4872=237169, 由于
10 487 − 1 m o d 237169 = 10 486 = 10 7 × 69 + 3 = ( 10 7 ) 69 × 1000 ≡ 38902 69 × 1000 = 1513365604 34 × 38902000 ≡ ( − 9785 ) 34 × 6284 = 95746225 17 × 6284 ≡ 167118 17 × 6284 = 27928425924 8 × 1050169512 ≡ 115991 8 × ( − 14820 ) = 13453912081 4 × ( − 14820 ) ≡ 26218 4 × ( − 14820 ) = 687383524 2 × ( − 14820 ) ≡ 67762 2 × ( − 14820 ) = 4591688644 × ( − 14820 ) ≡ 96804 × ( − 14820 ) = − 1434635280 ≡ 1 m o d 237169. \begin{aligned} & {
{10}^{487-1}}\text{ }\bmod 237169 \\ & ={
{10}^{486}}={
{10}^{7\times 69+3}}={
{\left( {
{10}^{7}} \right)}^{69}}\times 1000\equiv {
{38902}^{69}}\times 1000 \\ & ={
{1513365604}^{34}}\times 38902000\equiv {
{\left( -9785 \right)}^{34}}\times 6284={
{95746225}^{17}}\times 6284 \\ & \equiv {
{167118}^{17}}\times 6284={
{27928425924}^{8}}\times 1050169512\equiv {
{115991}^{8}}\times \left( -14820 \right) \\ & ={
{13453912081}^{4}}\times \left( -14820 \right)\equiv {
{26218}^{4}}\times \left( -14820 \right) \\ & ={
{687383524}^{2}}\times \left( -14820 \right)\equiv {
{67762}^{2}}\times \left( -14820 \right) \\ & =4591688644\times \left( -14820 \right)\equiv 96804\times \left( -14820 \right) \\ & =-1434635280 \\ & \equiv 1\text{ }\bmod 237169. \\ \end{aligned} 10487−1 mod237169=10486=107×69+3=(107)69×1000≡3890269×1000=151336560434×38902000≡(−9785)34×6284=9574622517×6284≡16711817×6284=279284259248×1050169512≡1159918×(−14820)=134539120814×(−14820)≡262184×(−14820)=6873835242×(−14820)≡677622×(−14820)=4591688644×(−14820)≡96804×(−14820)=−1434635280≡1 mod237169.
因此 487 2 = 237169 {
{487}^{2}}=237169 4872=237169有原根 10 + 487 = 497 10+487=497 10+487=497.
例题3 对所有 k ∈ Z > 0 k\in { {\mathbb{Z}}_{>0}} k∈Z>0, 找一个 7 k { {7}^{k}} 7k的原根.
解 由例题1, 3 , 5 3,\text{ }5 3, 5既是模 7 7 7的原根, 又是模 7 2 {
{7}^{2}} 72的原根. 因此 ∀ k ∈ Z > 0 \forall k\in {
{\mathbb{Z}}_{>0}} ∀k∈Z>0, 3 , 5 3,\text{ 5} 3, 5是模 7 k {
{7}^{k}} 7k的原根.
例题4 对所有 k ∈ Z > 0 k\in { {\mathbb{Z}}_{>0}} k∈Z>0, 找一个 487 k { {487}^{k}} 487k的原根.
解 由例题2, 497 ≡ 10 m o d 487 497\equiv 10\text{ }\bmod 487 497≡10 mod487既是模 487 487 487的原根, 也是模 487 2 {
{487}^{2}} 4872的原根, 因此 ∀ k ∈ Z > 0 \forall k\in {
{\mathbb{Z}}_{>0}} ∀k∈Z>0, 497 497 497是模 487 k {
{487}^{k}} 487k的原根.