深度学习数学基础学习笔记——线性代数(持续更新中)

这篇笔记探讨了深度学习中的线性代数基础知识,包括矩阵相乘、标量、向量、矩阵和张量的定义,以及范数的概念。矩阵的标准乘积在深度学习中有广泛应用,张量是神经网络数据的基础表示。范数如欧几里得范数和范数在机器学习中扮演重要角色,特别是在衡量向量和矩阵大小时。Frobenius范数是衡量矩阵大小的常见方法。
摘要由CSDN通过智能技术生成

该笔记只是记录我现在不太熟悉的知识点。

1.矩阵相乘

    记A B分别为mxn和nxp的矩阵。

    两个矩阵中对应元素的乘积称为元素对应乘积或者Hadamard乘积,记为A\odot B,而要求AB的维数相同。深度学习里面常用到这个运算,之前在论文里面有看到这个符号。

    而标准乘积,C=AB,得到的C是一个mxp的矩阵。

2.标量、向量、矩阵和张量

    张量就是多位数组,用“阶”表示张量的维度。

    pyt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值