动态规划










http://www.360doc.com/content/13/0601/00/8076359_289597587.shtml


最大子段和详解

最大子段和问题(Maximum Interval Sum)

(有时也称LIS)

经典的动态规划问题,几乎所有的算法教材都会提到.本文将分析最大子段和问题的几种不同效率的解法,以及最大子段和问题的扩展和运用.

一.问题描述

给定长度为n的整数序列,a[1...n], 求[1,n]某个子区间[i , j]使得a[i]+…+a[j]和最大.或者求出最大的这个和.例如(-2,11,-4,13,-5,2)的最大子段和为20,所求子区间为[2,4].

二. 问题分析

1.穷举法

穷举应当是每个人都要学会的一种方式,这里实际上是要穷举所有的[1,n]之间的区间,所以我们用两重循环,可以很轻易地做到遍历所有子区间,一个表示起始位置,一个表示终点位置.代码如下:

[cpp]  view plain  copy
  1. int start = 0;//起始位置  
  2. int end = 0;  //结束位置  
  3. int max = 0;  
  4. for(int i = 1; i <= n; ++i)  
  5. {  
  6.     for(int j = i; j <= n;++j)  
  7.     {  
  8.         int sum = 0;  
  9.         for(int k = i; k <=j; ++k)  
  10.             sum += a[k];  
  11.         if(sum > max)  
  12.         {  
  13.            start = i;  
  14.            end = j;  
  15.            max = sum;  
  16.         }  
  17.     }  
  18. }   

这个算法是几乎所有人都能想到的,它所需要的计算时间是O(n^3).当然,这个代码还可以做点优化,实际上我们并不需要每次都重新从起始位置求和加到终点位置.可以充分利用之前的计算结果.

或者我们换一种穷举思路,对于起点 i,我们遍历所有长度为1,2,…,n-i+1的子区间和,以求得和最大的一个.这样也遍历了所有的起点的不同长度的子区间,同时,对于相同起点的不同长度的子区间,可以利用前面的计算结果来计算后面的.

比如,i为起点长度为2的子区间和就等于长度为1的子区间的和+a[i+1]即可,这样就省掉了一个循环,计算时间复杂度减少到了O(n^2).代码如下:

[cpp]  view plain  copy
  1. int start = 0;//起始位置  
  2. int end = 0;//结束位置  
  3. int max = 0;  
  4. for(int i = 1; i <= n; ++i)  
  5. {  
  6.     int sum = 0;  
  7.     for(int j = i; j <= n;++j)  
  8.     {  
  9.         sum += a[j];  
  10.         if(sum > max)  
  11.         {  
  12.            start = i;  
  13.            end = j;  
  14.            max = sum;  
  15.         }  
  16.     }  
  17. }   


 

2.分治法

求子区间及最大和,从结构上是非常适合分治法的,因为所有子区间[start, end]只可能有以下三种可能性:

  • 在[1, n/2]这个区域内
  • 在[n/2+1, n]这个区域内
  • 起点位于[1,n/2],终点位于[n/2+1,n]内

以上三种情形的最大者,即为所求. 前两种情形符合子问题递归特性,所以递归可以求出. 对于第三种情形,则需要单独处理. 第三种情形必然包括了n/2和n/2+1两个位置,这样就可以利用第二种穷举的思路求出:

  • 以n/2为终点,往左移动扩张,求出和最大的一个left_max
  • 以n/2+1为起点,往右移动扩张,求出和最大的一个right_max
  • left_max+right_max是第三种情况可能的最大值

示例:

[cpp]  view plain  copy
  1. int maxInterval(int *a, int left, int right)  
  2.  {  
  3.     if(right==left)  
  4.       return a[left]>0?a[left]:0;  
  5.    
  6.     int center = (left+right)/2;  
  7.     //左边区间的最大子段和  
  8.     int leftMaxInterval = maxInterval(a,left,center);  
  9.     //右边区间的最大子段和  
  10.     int rightMaxInterval= maxInterval(a,center+1,right);  
  11.    
  12.     //以下求端点分别位于不同部分的最大子段和  
  13.    
  14.     //center开始向左移动  
  15.     int sum = 0;  
  16.     int left_max = 0;  
  17.     for(int i = center; i >= left; –i)  
  18.     {  
  19.        sum += a[i];  
  20.        if(sum > left_max)  
  21.           left_max = sum;  
  22.     }  
  23.     //center+1开始向右移动  
  24.     sum = 0;  
  25.     int right_max = 0;  
  26.     for(int i = center+1; i <= right; ++i)  
  27.     {  
  28.        sum += a[i];  
  29.        if(sum > right_max)  
  30.          right_max = sum;  
  31.     }  
  32.     int ret = left_max+right_max;  
  33.     if(ret < leftMaxInterval)  
  34.         ret = leftMaxInterval;  
  35.     if(ret < rightMaxInterval)  
  36.         ret = rightMaxInterval;  
  37.     return ret;  
  38.  }   


 

分治法的难点在于第三种情形的理解,这里应该抓住第三种情形的特点,也就是中间有两个定点,然后分别往两个方向扩张,以遍历所有属于第三种情形的子区间,求的最大的一个,如果要求得具体的区间,稍微对上述代码做点修改即可. 分治法的计算时间复杂度为O(nlogn).

3.动态规划法

动态规划的基本原理这里不再赘述,主要讨论这个问题的建模过程和子问题结构.时刻记住一个前提,这里是连续的区间

  • 令b[j]表示以位置 j 为终点的所有子区间中和最大的一个
  • 子问题:如j为终点的最大子区间包含了位置j-1,则以j-1为终点的最大子区间必然包括在其中
  • 如果b[j-1] >0, 那么显然b[j] = b[j-1] + a[j],用之前最大的一个加上a[j]即可,因为a[j]必须包含
  • 如果b[j-1]<=0,那么b[j] = a[j] ,因为既然最大,前面的负数必然不能使你更大

对于这种子问题结构和最优化问题的证明,可以参考算法导论上的“剪切法”,即如果不包括子问题的最优解,把你假设的解粘帖上去,会得出子问题的最优化矛盾.证明如下

  • 令a[x,y]表示a[x]+…+a[y] , y>=x
  • 假设以j为终点的最大子区间 [s, j] 包含了j-1这个位置,以j-1为终点的最大子区间[ r, j-1]并不包含其中
  • 即假设[r,j-1]不是[s,j]的子区间
  • 存在s使得a[s, j-1]+a[j]为以j为终点的最大子段和,这里的 r != s 
  • 由于[r, j -1]是最优解, 所以a[s,j-1]<a[r, j-1],所以a[s,j-1]+a[j]<a[r, j-1]+a[j]
  • 与[s,j]为最优解矛盾.

实例:

[cpp]  view plain  copy
  1. int max = 0;  
  2. int b[n+1];  
  3. int start = 0;  
  4. int end = 0;  
  5. memset(b,0,n+1);  
  6. for(int i = 1; i <= n; ++i)  
  7.  {  
  8.    if(b[i-1]>0)  
  9.    {  
  10.      b[i] = b[i-1]+a[i];  
  11.    }else{  
  12.      b[i] = a[i];  
  13.    }  
  14.    if(b[i]>max)  
  15.      max = b[i];  
  16.  }   


动态规划法的计算时间复杂度为O(n),是最优的解。做几道题加深理解

最直白的LIS题:http://acm.hdu.edu.cn/showproblem.php?pid=1087

最大子段和升级版,最大M段和:http://acm.hdu.edu.cn/showproblem.php?pid=1024





https://www.topcoder.com/community/data-science/data-science-tutorials/dynamic-programming-from-novice-to-advanced/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值