Pandas之skew,求偏度

skew定义

偏度(skewness),是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。偏度(Skewness)亦称偏态、偏态系数。
表征概率分布密度曲线相对于平均值不对称程度的特征数。直观看来就是密度函数曲线尾部的相对长度。
定义上偏度是样本的三阶标准化矩:
s k e w ( X ) = E [ ( X − μ σ ) 3 ] ( 1 ) skew(X)=E[(\frac{X-\mu}{\sigma})^3]\tag{$1$} skew(X)=E[(σXμ)3](1)

方法

DataFrame.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

参数

  • axis : {index (0), columns (1)}
    定义计算的轴
  • skipna : boolean, default True
    计算时是否忽略空缺值,默认忽略
  • level : int or level name, default None
    (用的比较少)
  • numeric_only : boolean, default None
    (用的比较少)

实验

skew

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Roaring Kitty

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值