时序论文20|ICLR20 可解释时间序列预测N-BEATS

论文标题:N-BEATS N EURAL BASIS EXPANSION ANALYSIS FOR INTERPRETABLE TIME SERIES FORECASTING

论文链接:https://arxiv.org/pdf/1905.10437.pdf

前言

为什么时间序列可解释很重要?时间序列的可解释性是确保模型预测结果可靠、透明且易于理解的关键因素。它帮助增强用户信任,促进更明智的决策,同时便于调试和风险管理,特别是在特定领域,例如风险投资、医疗诊断等领域,理解模型背后的逻辑非常重要,毕竟谁也不敢把决策权交给一个黑盒模型。

本文设计了一种深度神经网络架构N-BEATS,它以残差连接前后向链接和深层全连接层堆叠为核心。这一架构不仅具备高度的可解释性,而且能够广泛适用于多个领域,模型的配置完全没有依赖于特定于时间序列的特性,却能在多样化的数据集上展现出卓越的性能(与2020年的模型相比),证明了深度学习的基本构件,比如残差块,本身就具有解决广泛预测问题的能力。此外,本文还展示了如何通过增强架构,实现在不牺牲准确性的前提下,提供可解释的输出。

本文模型

本文的目的是构造一个简单、可解释性强的深度学习时间序列预测模型,问题的场景是一维、单变量时序预测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值