前言
梳理了近期几篇时间序列大模型研究文章(后台回复:“论文合集”获取),时间序列大模型的研究正在迅速发展,并且在多个领域和应用中展现出巨大的潜力。随着技术的不断进步,预计未来会有更多创新的方法和应用出现,但我感觉目前可以重点关注以下三方面:
基础模型的构建:研究者们正在尝试构建时间序列预测的基础模型,这些模型可以在不同的时间序列数据集上进行预训练,并展示出良好的泛化能力。
模型可解释性:通过文本形式提供解释性的时间序列预测结果,帮助用户更好地理解时间序列数据的模式和趋势。
特定领域的应用:大模型正在被应用于特定领域的时间序列预测,如金融、医疗、交通等,以解决特定问题并提供可解释的预测。
1
UniTS
论文标题:UniTS: Building a Unified Time Series Model
尽管当前的基础模型能够处理序列数据,但它们并不适用于时间序列分析,时间序列分析面临着独特挑战:时间序列数据的多样性和多领域性、预测、分类和其他任务类型之间的任务规范差异,以及对特定任务模型的需求。本文提出UniTS,这是一个统一的时间序列模型,它支持通用的任务规范,能够处理分类、预测、插补和异常检测等任务。这一模型采用了一个创新的统一网络架构,结合了序列和变量注意力机制、动态线性算子,并作为一个统一模型进行训练。在38个跨领域的数据集上,UniTS