Study notes for Gaussian Mixture Model

1. Mixture Model

  • A typical k-dimensional mixture model is a hierarchical model consisting of:
    • There are N observations, each observation is a mixture of K components. 
    • Each component belongs to the same distribution but with different parameters. 
    • A set of K mixture weights, each of which is a probability, all of which sum to one. 

2. Gaussian Mixture Model

  • Multivariate (d-dimensional) Gaussian distribution is elaborated in Anomaly Detection.
  • A Gaussian mixture model (GMM) is a weighted sum of K components (multivariate) Gaussian distributions as given by:
    where wj is the prior probability (weight) that an observation x is derived from the j-th Gaussian distribution:
    My understanding: a GMM is a linear combination of K Gaussian distributions, hence it is likely to be a mixed Gaussian distribution, given the combination parameters w j, corresponding to the importance of the j-th Gaussain distribution. Put simply,  a GMM is a distribution for a variable. When it is applied to clustering problem, each Gaussian component corresponds to one cluster. Hence, each example may be generated by different components with different probabilities. We will not assign each example to a specific cluster, but give a probability that an example is assigned (or due to) a specific Gaussian distribution. 
  • Examples:
  • Problems: given a set of data (i.e., observaitons), and assuming that each of these observations is derived due to an unknown distribution (i.e., GMM), how to estimate the parameters of the GMM model that best fits the data.
  • Solutions: maximize the likelihood of the data with regard to the model parameters:
    However, sine each is often a small value,the product value will becomes extremely small that overflows the representation capability of a computer (浮点溢出). Hence, we often adopt the log-likelihood function as instead: 
    Hence, it can be solved by an EM algorithm, which aims to maximize the log-likelihood function. 

3. EM for GMM

  • For GMM, the hidden variable Q will describe which Gaussian generated each example. If Q was observed, then it would be simple to maximize the likelihood of the data: simply estimate the parameters Gaussian by Gaussion. Moreover, we will see we can easily estimate Q.
  • The mixture of Gaussian model for each example xi can be written as follows: 
  • Let us now introduce the following indicator variable:
  • We can now write the joint likelihood of all the x and Q:
    which in log gives:
  • Let us now write the corresponding auxiliary function:
  • Hence, the E-step estimates the posterior:
  • And the M-step finds the parameters that maximizes A, hence search for:
    for each parameter (, and weights, note that ). The resultant update parameters are: 
         Means:     
                          Variance:    
    Weights:    
  • EM is very sensitive to initial conditions. Hence, we often use K-means to initialize the EM.

4. Adapted GMM

  • In some cases, you have access to only a few examples coming from the target distribution, but many from a nearby distribution.
  • In such cases, the maximum a posterior (MAP) adaption is most well-known and used for GMMs. 
  • Normal maximum likelihood training for a data set x: 
  • MAP training:
    where represents your prior belief about the distribution of the parameters 
  • To select a proper distribution, we often use conjugate priors, to ensure the EM algorithm tractable. 
    • Dirichlet distribution for weights
    • Gaussian densities for means and variances. 

References

  1. Pluskid, 漫谈 Clustering (3): Gaussian Mixture Model
  2. Samy Bengio, Statistical Machine Learning from Data Gaussian Mixture Models.
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 高斯混合模型 (Gaussian Mixture Model) 是一种生成模型,假设数据是由多个高斯分布生成的,并使用最大似然估计或EM算法来估计模型参数。它通常用于聚类分析,并在许多领域中都得到了广泛应用,如图像分析、信号处理、生物信息学等。 ### 回答2: 高斯混合模型是一种概率模型,用于对数据进行建模和聚类。它由多个高斯分布混合而成,每个高斯分布代表一个聚类。高斯混合模型适用于具有复杂数据分布的场景,能够对数据的形状、密度和方差等进行建模。 在高斯混合模型中,每个高斯分布都有自己的均值和协方差矩阵。通过选择适当的混合模型参数,可以使得模型能够更好地拟合数据。模型的参数估计可以使用最大似然估计或其他优化算法进行求解。 高斯混合模型可以用于聚类分析,在聚类过程中,模型根据数据分布的不同,将数据点归属于不同的聚类。基于高斯混合模型的聚类方法可以灵活地适应不同形状的数据分布,能够发现非球形和重叠的聚类。 此外,高斯混合模型也可以用于生成新的数据样本。根据已经学得的模型参数,可以从高斯分布中随机采样,生成与原始数据相似的新数据样本。 总之,高斯混合模型是一种常用的概率模型,可以用于数据的建模、聚类和生成。它具有灵活性和准确性,适用于各种不同类型的数据分析问题。 ### 回答3: 高斯混合模型(Gaussian Mixture Model,GMM)是一种用于对数据进行建模和聚类的统计模型。GMM可以看作是多个高斯分布的线性组合,每个高斯分布表示一个聚类。 GMM的基本思想是假设数据是由多个高斯分布组成的混合体。通过估计每个高斯分布的均值和方差,以及混合系数(表示每个分布的权重),可以得到对数据进行建模的 GMM。这样,可以通过计算每个数据点对于每个高斯分布的概率来进行聚类。具体而言,对于给定数据点,计算其属于每个高斯分布的概率,然后根据概率大小将其归为相应的聚类。 GMM的参数估计可以使用最大似然估计(Maximum Likelihood Estimation,MLE)方法。通过迭代优化,可以找到一个局部最优解,使得 GMM 最大化观测数据的似然函数。 GMM有以下几个特点:首先,GMM允许数据点属于多个聚类。每个聚类的权重是小于等于1的概率。其次,GMM对数据的分布形态没有假设,而是通过调整高斯分布的均值和方差来适应数据。最后,GMM可以解决由于观测噪声、缺失数据或异常值引起的数据不完全性和不准确性的问题。 GMM在模式识别、数据挖掘和图像处理等领域广泛应用,例如人脸识别、语音识别和文本分类等。它可以根据数据的分布情况自动进行聚类分析,并可以用于特征提取、数据压缩和异常检测等任务。然而,GMM也存在一些缺点,比如对于大规模数据集的计算复杂度较高,并且对初始参数敏感,需要进行适当选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值