Gaussian Mixture Model:混合高斯模型介绍

最近看一些计算机视觉和图形学类的文章,经常发现一个被称为Gaussian mixture model(GMM)的技术,应用在图像图形处理的算法中。出于好奇,我最近阅读了GMM的文献[1]。基于该文献,我将在这篇博客介绍一下GMM的一些核心思想以及比较成功的应用。

1. 简介

GMM是一个参数概率密度函数,由加权的分块高斯密度累加和表示。GMM通常被用来表示一个概率密度分布的参数模型,以提供建立特征度量。GMM的参数由训练数据获得,通过迭代计算Expectation-Maximization(EM,最大期望)算法或Maximum A Posteriori estimation(MAP,最大后验估计)算法来实现训练。

这里我们给出GMM的数学模型:

x是一个D维的连续向量,在应用中可以被看做度量或者特征;M表示分块的数量,wi表示对应M的权重; 表示分块高斯密度。每一个分块的密度是一个D个变量的高斯函数:

 为平均向量,为协方差矩阵, 混合权重满足:。这里给出参数形式,  对应不同的分块M: 

这里的协方差矩阵可以是满秩的,或者限制在主对角线上。另外,参数能够被共享或者绑定在不同的分块,取决于不同的应用需求。这里以语音识别为例,来说明GMM的拟合能力:

如上图所示,第一行为一段自然的语音输入。这段语音不可避免的会受到一些噪声的影响,但是整体分布是平滑的。使用单峰值峰Gaussian模型,显然,会造成严重的信息损失。vector quantize (VQ) 提供的是离散拟合。GMM相对来说更像是二者结合,结果会更加准确。

2. 实例

这里使用一个比较容易理解的实例来理解GMM的使用场景,即图像分割。我们以文献[2]为例,来说明GMM在图像中是如何实现像素级的聚类以及分割的。

这里用一个模型来说明:

I(x,y)表示一个图像中在像素(x,y)的颜色, P表示为基于像素颜色的概率判定,对于不同的分块,或者不同的,都会对应一个概率结果。相关参数还会根据区域进行重新估计:

这两步就共同组成了EM方法解GMM的E-step和M-step。感觉上就是根据该模型进行迭代计算,就能得到最终面向所有像素的概率分布。那么根据这个概率分布,对应的图像分割结果就能够被同时获得。在文献[2]中为了做后续的应用,做了一些调整,但是整体上还是按照上述思路来做。下图展示一个分割的结果。 

 可以看到,图像中相对应的元素被聚类,实现比较清晰的分割结果。

3. 总结

GMM是一个拟合能力不错的概率预测工具,能够对数据集的分布进行基于度量的统计分析,并得到一个基于概率的计算结果。该工具可以用于识别,分割,聚类等工作,具有很好的扩展性。 

Reference

[1] Reynolds D A. Gaussian mixture models[J]. Encyclopedia of biometrics, 2009, 741(659-663).

[2] Tai Y W, Jia J, Tang C K. Local color transfer via probabilistic segmentation by expectation-maximization[C] CVPR, 2005, 1: 747-754.

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿老甘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值