第二章 矩阵及其运算

  本章主要介绍了矩阵的定义及其基本运算。

目录

习题二

8.

(1)设 A , B \bm{A},\bm{B} A,B n n n阶矩阵,且 A \bm{A} A为对称阵,证明 B T A B \bm{B}^\mathrm{T}\bm{A}\bm{B} BTAB也是对称阵;

  根据矩阵乘积的转置规则,有
( B T A B ) T = B T A T ( B T ) T = B T A B ( 因 A 为对称阵 ) . (\bm{B}^\mathrm{T}\bm{A}\bm{B})^\mathrm{T}=\bm{B}^\mathrm{T}\bm{A}^\mathrm{T}(\bm{B}^\mathrm{T})^\mathrm{T}=\bm{B}^\mathrm{T}\bm{A}\bm{B}(\text{因}\bm{A}\text{为对称阵}). (BTAB)T=BTAT(BT)T=BTAB(A为对称阵).
  故由定义知 B T A B \bm{B}^\mathrm{T}\bm{A}\bm{B} BTAB为对称阵;(这道题主要利用了转置矩阵的定义证明

(2)设 A , B \bm{A},\bm{B} A,B都是 n n n阶对称阵,证明 A B \bm{A}\bm{B} AB是对称阵的充要条件是 A B = B A \bm{A}\bm{B}=\bm{B}\bm{A} AB=BA

  因 A T = A , B T = B \bm{A}^\mathrm{T}=\bm{A},\bm{B}^\mathrm{T}=\bm{B} AT=A,BT=B,故
A B ⇔ ( A B ) T = A B ⇔ B T A T = A B ⇔ A B = B A . \begin{aligned} \bm{A}\bm{B}&\Leftrightarrow(\bm{A}\bm{B})^\mathrm{T}=\bm{A}\bm{B}\\ &\Leftrightarrow\bm{B}^\mathrm{T}\bm{A}^\mathrm{T}=\bm{A}\bm{B}\Leftrightarrow\bm{A}\bm{B}=\bm{B}\bm{A}. \end{aligned} AB(AB)T=ABBTAT=ABAB=BA.
这道题主要利用了转置矩阵的特点证明

13.设方阵 A \bm{A} A满足 A 2 − A − 2 E = O , \bm{A}^2-\bm{A}-2\bm{E}=\bm{O}, A2A2E=O,证明 A \bm{A} A A + 2 E \bm{A}+2\bm{E} A+2E都可逆,并求 A − 1 \bm{A}^{-1} A1 ( A + 2 E ) − 1 (\bm{A}+2\bm{E})^{-1} (A+2E)1

  先证 A \bm{A} A可逆。由上式得
A ( A − E ) = 2 E . \bm{A}(\bm{A}-\bm{E})=2\bm{E}. A(AE)=2E.
  也就是
A ( 1 2 ( A − E ) ) = E . \bm{A}\left(\cfrac{1}{2}(\bm{A}-\bm{E})\right)=\bm{E}. A(21(AE))=E.
  由推论可知 A \bm{A} A是可逆的,且 A = 1 2 ( A − E ) \bm{A}=\cfrac{1}{2}(\bm{A}-\bm{E}) A=21(AE)
  再证 A + 2 E \bm{A}+2\bm{E} A+2E可逆。由
( A + 2 E ) ( A − 3 E ) = A 2 − A − 6 E = 2 E − 6 E = − 4 E . (\bm{A}+2\bm{E})(\bm{A}-3\bm{E})=\bm{A}^2-\bm{A}-6\bm{E}=2\bm{E}-6\bm{E}=-4\bm{E}. (A+2E)(A3E)=A2A6E=2E6E=4E.
  即
( A + 2 E ) [ 1 4 ( A − 3 E ) ] = E . (\bm{A}+2\bm{E})\left[\cfrac{1}{4}(\bm{A}-3\bm{E})\right]=\bm{E}. (A+2E)[41(A3E)]=E.
  同理,知 A + 2 E \bm{A}+2\bm{E} A+2E可逆,且 ( A + 2 E ) − 1 = 1 4 ( A − 3 E ) (\bm{A}+2\bm{E})^{-1}=\cfrac{1}{4}(\bm{A}-3\bm{E}) (A+2E)1=41(A3E)。(这道题主要利用了凑整的方法求解

16.设 A \bm{A} A为三阶矩阵, ∣ A ∣ = 1 2 |\bm{A}|=\cfrac{1}{2} A=21,求 ∣ ( 2 A ) − 1 − 5 A ∗ ∣ |(2\bm{A})^{-1}-5\bm{A}^*| (2A)15A

  因 ∣ A ∣ = 1 2 ≠ 0 |\bm{A}|=\cfrac{1}{2}\ne0 A=21=0,故 A \bm{A} A可逆。于是由
A ∗ = ∣ A ∣ A − 1 = 1 2 A − 1 及 ( 2 A ) − 1 = 1 2 A − 1 . \bm{A}^*=|\bm{A}|\bm{A}^{-1}=\cfrac{1}{2}\bm{A}^{-1}\text{及}(2\bm{A})^{-1}=\cfrac{1}{2}\bm{A}^{-1}. A=AA1=21A1(2A)1=21A1.
  得
( 2 A ) − 1 − 5 A ∗ = 1 2 A − 1 − 5 2 A − 1 = − 2 A − 1 . (2\bm{A})^{-1}-5\bm{A}^*=\cfrac{1}{2}\bm{A}^{-1}-\cfrac{5}{2}\bm{A}^{-1}=-2\bm{A}^{-1}. (2A)15A=21A125A1=2A1.
  两端取行列式得
∣ ( 2 A ) − 1 − 5 A ∗ ∣ = ∣ − 2 A − 1 ∣ = ( − 2 ) 3 ∣ A ∣ − 1 = − 16. |(2\bm{A})^{-1}-5\bm{A}^*|=|-2\bm{A}^{-1}|=(-2)^3|\bm{A}|^{-1}=-16. (2A)15A=2A1=(2)3A1=16.
这道题主要利用了逆矩阵的性质求解

19.设 A = d i a g ( 1 , − 2 , 1 ) , A ∗ B A = 2 B A − 8 E \bm{A}=\mathrm{diag}(1,-2,1),\bm{A}^*\bm{B}\bm{A}=2\bm{B}\bm{A}-8\bm{E} A=diag(1,2,1),ABA=2BA8E,求 B \bm{B} B

  由于所给矩阵方程中含有 A \bm{A} A及其伴随矩阵 A ∗ \bm{A}^* A,因此仍从公式 A A ∗ = ∣ A ∣ E \bm{A}\bm{A}^*=|\bm{A}|\bm{E} AA=AE着手。为此,用 A \bm{A} A左乘所给方程两边,得
A A ∗ B A = 2 A B A − 8 A . \bm{A}\bm{A}^*\bm{B}\bm{A}=2\bm{A}\bm{B}\bm{A}-8\bm{A}. AABA=2ABA8A.
  又, A = − 2 ≠ 0 \bm{A}=-2\ne0 A=2=0,故 A \bm{A} A是可逆矩阵,用 A − 1 \bm{A}^{-1} A1右乘上式两边,得
∣ A ∣ B = 2 A B − 8 E ⇒ ( 2 A + 2 E ) B = 8 E ⇒ ( A + E ) B = 4 E . |\bm{A}|\bm{B}=2\bm{A}\bm{B}-8\bm{E}\Rightarrow(2\bm{A}+2\bm{E})\bm{B}=8\bm{E}\Rightarrow(\bm{A}+\bm{E})\bm{B}=4\bm{E}. AB=2AB8E(2A+2E)B=8E(A+E)B=4E.
  注意到 A + E = d i a g ( 1 , − 2 , 1 ) + d i a g ( 1 , 1 , 1 ) = d i a g ( 2 , − 1 , 2 ) \bm{A}+\bm{E}=\mathrm{diag}(1,-2,1)+\mathrm{diag}(1,1,1)=\mathrm{diag}(2,-1,2) A+E=diag(1,2,1)+diag(1,1,1)=diag(2,1,2)是可逆矩阵,且
( A + E ) − 1 d i a g ( 1 2 , − 1 , 1 2 ) . (\bm{A}+\bm{E})^{-1}\mathrm{diag}\left(\cfrac{1}{2},-1,\cfrac{1}{2}\right). (A+E)1diag(21,1,21).
  于是
B = 4 ( A + E ) − 1 = d i a g ( 2 , − 4 , 2 ) . \bm{B}=4(\bm{A}+\bm{E})^{-1}=\mathrm{diag}(2,-4,2). B=4(A+E)1=diag(2,4,2).
这道题主要利用了等式转化的方法求解

20.已知 A \bm{A} A的伴随阵 A ∗ = d i a g ( 1 , 1 , 1 , 8 ) \bm{A}^*=\mathrm{diag}(1,1,1,8) A=diag(1,1,1,8),且 A B A − 1 = B A − 1 + 3 E \bm{A}\bm{B}\bm{A}^{-1}=\bm{B}\bm{A}^{-1}+3\bm{E} ABA1=BA1+3E,求 B \bm{B} B

  先化简所给的矩阵方程:
A B A − 1 = B A − 1 + 3 E ⇒ ( A − E ) B A − 1 = 3 E ⇒ ( A − E ) B = 3 A . \begin{aligned} &\bm{A}\bm{B}\bm{A}^{-1}=\bm{B}\bm{A}^{-1}+3\bm{E}\\ \Rightarrow&(\bm{A}-\bm{E})\bm{B}\bm{A}^{-1}=3\bm{E}\\ \Rightarrow&(\bm{A}-\bm{E})\bm{B}=3\bm{A}. \end{aligned} ABA1=BA1+3E(AE)BA1=3E(AE)B=3A.
  若能求得 A \bm{A} A并且 A − E \bm{A}-\bm{E} AE为可逆矩阵,就可解得
B = 3 ( A − E ) − 1 A . (*) \bm{B}=3(\bm{A}-\bm{E})^{-1}\bm{A}.\tag{*} B=3(AE)1A.(*)
  下面计算 A \bm{A} A。由题意知 A \bm{A} A是可逆矩阵,由 A A ∗ = ∣ A ∣ E \bm{A}\bm{A}^*=|\bm{A}|\bm{E} AA=AE,两边取行列式得 ∣ A ∣ ∣ A ∗ ∣ = ∣ A ∣ 4 |\bm{A}||\bm{A}^*|=|\bm{A}|^4 AA=A4,即 ∣ A ∣ 3 = ∣ A ∗ ∣ = 8 |\bm{A}|^3=|\bm{A}^*|=8 A3=A=8,故 ∣ A ∣ = 8 |\bm{A}|=8 A=8,于是
A = 2 ( A ∗ ) − 1 = 2 d i a g ( 1 , 1 , 1 , 8 ) − 1 = 2 d i a g ( 1 , 1 , 1 , 1 8 ) = d i a g ( 2 , 2 , 2 , 1 4 ) . \begin{aligned} \bm{A}&=2(\bm{A}^*)^{-1}=2\mathrm{diag}(1,1,1,8)^{-1}\\ &=2\mathrm{diag}\left(1,1,1,\cfrac{1}{8}\right)=\mathrm{diag}\left(2,2,2,\cfrac{1}{4}\right). \end{aligned} A=2(A)1=2diag(1,1,1,8)1=2diag(1,1,1,81)=diag(2,2,2,41).
  据此, A − E = d i a g ( 1 , 1 , 1 , − 3 4 ) \bm{A}-\bm{E}=\mathrm{diag}\left(1,1,1,-\cfrac{3}{4}\right) AE=diag(1,1,1,43)是可逆矩阵,(因 A − E = − 3 4 ≠ 0 \bm{A}-\bm{E}=-\cfrac{3}{4}\ne0 AE=43=0)并且
( A − E ) − 1 = d i a g ( 1 , 1 , 1 , − 4 3 ) . (\bm{A}-\bm{E})^{-1}=\mathrm{diag}\left(1,1,1,-\cfrac{4}{3}\right). (AE)1=diag(1,1,1,34).
  将上述结果代入 ( ∗ ) (*) ()式得
B = 3 d i a g ( 1 , 1 , 1 , − 4 3 ) d i a g ( 2 , 2 , 2 , 1 4 ) = d i a g ( 6 , 6 , 6 , − 1 ) . \bm{B}=3\mathrm{diag}\left(1,1,1,-\cfrac{4}{3}\right)\mathrm{diag}\left(2,2,2,\cfrac{1}{4}\right)=\mathrm{diag}\left(6,6,6,-1\right). B=3diag(1,1,1,34)diag(2,2,2,41)=diag(6,6,6,1).
这道题主要利用了化简的方法求解

22.设 A P = P Λ \bm{A}\bm{P}=\bm{P}\bm{\Lambda} AP=PΛ,其中 P = ( 1 1 1 1 0 − 2 1 − 1 1 ) , Λ = ( − 1 1 5 ) \bm{P}=\begin{pmatrix}1&1&1\\1&0&-2\\1&-1&1\end{pmatrix},\bm{\Lambda}=\begin{pmatrix}-1&&\\&1&\\&&5\end{pmatrix} P=111101121,Λ=115,求 φ ( A ) = A 8 ( 5 E − 6 A + A 2 ) \varphi(\bm{A})=\bm{A}^8(5\bm{E}-6\bm{A}+\bm{A}^2) φ(A)=A8(5E6A+A2)

  因 ∣ P ∣ = ∣ 1 1 1 1 0 − 2 1 − 1 1 ∣ = − 6 ≠ 0 |\bm{P}|=\begin{vmatrix}1&1&1\\1&0&-2\\1&-1&1\end{vmatrix}=-6\ne0 P=111101121=6=0,故 P \bm{P} P是可逆矩阵。于是,由 A P = P Λ \bm{A}\bm{P}=\bm{P}\bm{\Lambda} AP=PΛ A = P Λ P − 1 \bm{A}=\bm{P}\bm{\Lambda}\bm{P}^{-1} A=PΛP1,并且记多项式 φ ( x ) = x 8 ( 5 − 6 x + x 2 ) \varphi(x)=x^8(5-6x+x^2) φ(x)=x8(56x+x2),有
φ ( A ) = P φ ( Λ ) P − 1 . \varphi(\bm{A})=\bm{P}\varphi(\bm{\Lambda})\bm{P}^{-1}. φ(A)=Pφ(Λ)P1.
  因 Λ \bm{\Lambda} Λ是三阶对角阵,故
φ ( Λ ) = d i a g ( φ ( − 1 ) , φ ( 1 ) , φ ( 5 ) ) = d i a g ( 12 , 0 , 0 ) . \varphi(\bm{\Lambda})=\mathrm{diag}(\varphi(-1),\varphi(1),\varphi(5))=\mathrm{diag}(12,0,0). φ(Λ)=diag(φ(1),φ(1),φ(5))=diag(12,0,0).
  于是
φ ( A ) = ( 1 1 1 1 0 − 2 1 − 1 1 ) ( − 1 1 5 ) ( − 1 6 P ∗ ) = − 2 ( 1 0 0 1 0 0 1 0 0 ) ( A 11 A 21 A 31 ∗ ∗ ∗ ∗ ∗ ∗ ) = − 2 ( 1 0 0 1 0 0 1 0 0 ) ( − 2 − 2 − 2 ∗ ∗ ∗ ∗ ∗ ∗ ) = 4 ( 1 1 1 1 1 1 1 1 1 ) \begin{aligned} \varphi(\bm{A})&=\begin{pmatrix}1&1&1\\1&0&-2\\1&-1&1\end{pmatrix}\begin{pmatrix}-1&&\\&1&\\&&5\end{pmatrix}\left(-\cfrac{1}{6}\bm{P}^*\right)\\ &=-2\begin{pmatrix}1&0&0\\1&0&0\\1&0&0\end{pmatrix}\begin{pmatrix}\bm{A}_{11}&\bm{A}_{21}&\bm{A}_{31}\\*&*&*\\*&*&*\end{pmatrix}\\ &=-2\begin{pmatrix}1&0&0\\1&0&0\\1&0&0\end{pmatrix}\begin{pmatrix}-2&-2&-2\\*&*&*\\*&*&*\end{pmatrix}\\ &=4\begin{pmatrix}1&1&1\\1&1&1\\1&1&1\end{pmatrix} \end{aligned} φ(A)=111101121115(61P)=2111000000A11A21A31=2111000000222=4111111111
这道题主要考查了矩阵多项式的求解

23.设矩阵 A \bm{A} A可逆,证明其伴随矩阵 A ∗ \bm{A}^* A也可逆,且 ( A ∗ ) − 1 = ( A − 1 ) ∗ (\bm{A}^*)^{-1}=(\bm{A}^{-1})^* (A)1=(A1)

  因 A A ∗ = ∣ A ∣ E \bm{A}\bm{A}^*=|\bm{A}|\bm{E} AA=AE ∣ A ∣ ≠ 0 |\bm{A}|\ne0 A=0,由推论知 A ∗ \bm{A}^* A可逆,且
( A ∗ ) − 1 = 1 ∣ A ∣ A . (\bm{A}^*)^{-1}=\cfrac{1}{|\bm{A}|}\bm{A}. (A)1=A1A.
  另一方面,因 A − 1 ( A − 1 ) ∗ = ∣ A − 1 ∣ E \bm{A}^{-1}(\bm{A}^{-1})^*=|\bm{A}^{-1}|\bm{E} A1(A1)=A1E,用 A \bm{A} A左乘此式两边得
( A − 1 ) ∗ = ∣ A − 1 ∣ A = 1 ∣ A ∣ A . (\bm{A}^{-1})^*=|\bm{A}^{-1}|\bm{A}=\cfrac{1}{|\bm{A}|}\bm{A}. (A1)=A1A=A1A.
  比较上面两个式子,即知结论成立。(这道题主要利用了两边同时推导求解

24.设 n n n阶矩阵 A \bm{A} A的伴随阵为 A ∗ \bm{A}^* A,证明:

(1)若 ∣ A ∣ = 0 |\bm{A}|=0 A=0,则 ∣ A ∗ ∣ = 0 |\bm{A}^*|=0 A=0

  因
A ∗ A = ∣ A ∣ E . \bm{A}^*\bm{A}=|\bm{A}|\bm{E}. AA=AE.
  当 ∣ A ∣ = 0 |\bm{A}|=0 A=0时,上式成为 A ∗ A = O \bm{A}^*\bm{A}=\bm{O} AA=O
  要证 ∣ A ∗ ∣ = 0 |\bm{A}^*|=0 A=0,用反证法:设 ∣ A ∗ ∣ ≠ 0 |\bm{A}^*|\ne0 A=0,由矩阵可逆的充要条件知, A ∗ \bm{A}^* A是可逆矩阵,用 ( A ∗ ) − 1 (\bm{A}^*)^{-1} (A)1左乘上式等号两边,得 A = O \bm{A}=\bm{O} A=O。于是,推得 A \bm{A} A的所有 n − 1 n-1 n1阶子式,亦即 A ∗ \bm{A}^* A的所有元素均为零。这导致 A ∗ = O \bm{A}^*=\bm{O} A=O。此与 A ∗ \bm{A}^* A为可逆矩阵矛盾。这一矛盾说明,当 ∣ A ∣ = 0 |\bm{A}|=0 A=0时, ∣ A ∗ ∣ = 0 |\bm{A}^*|=0 A=0。(这道题主要利用了反证法求解

(2) ∣ A ∗ ∣ = ∣ A ∣ n − 1 |\bm{A}^*|=|\bm{A}|^{n-1} A=An1

  分两种情形:
  情形1: ∣ A ∣ = 0 |\bm{A}|=0 A=0。由(1), ∣ A ∗ ∣ = 0 = ∣ A ∣ n − 1 |\bm{A}^*|=0=|\bm{A}|^{n-1} A=0=An1,结论成立;
  情形2:在 A ∗ A = ∣ A ∣ E \bm{A}^*\bm{A}=|\bm{A}|\bm{E} AA=AE的两边取行列式,得
∣ A ∗ ∣ ∣ A ∣ = ∣ A ∗ A ∣ = ∣ ∣ A ∣ E n ∣ = ∣ A ∣ n . |\bm{A}^*||\bm{A}|=|\bm{A}^*\bm{A}|=||\bm{A}|\bm{E}_n|=|\bm{A}|^n. AA=AA=AEn=An.
  于是 ∣ A ∗ ∣ = ∣ A ∣ n − 1 . |\bm{A}^*|=|\bm{A}|^{n-1}. A=An1.
这道题主要利用了分情况讨论的方法求解

27.设 n n n阶矩阵 A \bm{A} A s s s阶矩阵 B \bm{B} B都可逆,求 ( O A B O ) − 1 \begin{pmatrix}\bm{O}&\bm{A}\\\bm{B}&\bm{O}\end{pmatrix}^{-1} (OBAO)1

  因 A \bm{A} A B \bm{B} B均可逆,作分块阵 ( O B − 1 A − 1 O ) \begin{pmatrix}\bm{O}&\bm{B}^{-1}\\\bm{A}^{-1}&\bm{O}\end{pmatrix} (OA1B1O),由分块矩阵乘法规则,
( O A B O ) ( O B − 1 A − 1 O ) = ( E n O O E s ) = E n + s . \begin{pmatrix}\bm{O}&\bm{A}\\\bm{B}&\bm{O}\end{pmatrix}\begin{pmatrix}\bm{O}&\bm{B}^{-1}\\\bm{A}^{-1}&\bm{O}\end{pmatrix}=\begin{pmatrix}\bm{E_n}&\bm{O}\\\bm{O}&\bm{E_s}\end{pmatrix}=\bm{E_{n+s}}. (OBAO)(OA1B1O)=(EnOOEs)=En+s.
  于是, ( O A B O ) \begin{pmatrix}\bm{O}&\bm{A}\\\bm{B}&\bm{O}\end{pmatrix} (OBAO)可逆,且 ( O A B O ) − 1 = ( O B − 1 A − 1 O ) \begin{pmatrix}\bm{O}&\bm{A}\\\bm{B}&\bm{O}\end{pmatrix}^{-1}=\begin{pmatrix}\bm{O}&\bm{B}^{-1}\\\bm{A}^{-1}&\bm{O}\end{pmatrix} (OBAO)1=(OA1B1O)。(这道题主要利用了凑整的方法求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值