正态分布矩母函数

数学 专栏收录该内容
7 篇文章 0 订阅

正态分布矩母函数的求解


  1. 必要公式推导

求的是∫exp(-(x^2)/2)dx,我们先考虑他的平方
(∫exp(-(x^2)/2)dx) * (∫exp(-(x^2)/2)dx) = (∫exp(-(x^2)/2)dx) * (∫exp(-(y^2)/2)dy) = ∫∫exp(-(x^2 + y^2)/2)dxdy
这里把第二个积分的积分变量从x换成了y,这是可以的
再用极坐标变换
x = rcost
y = rsint
得到:
原式 = ∫dt∫r * exp(-(r^2)/2)dr
这里t的范围是0到2pi(圆周率),r的范围是0到无穷大.后面那个积分里面出现了一个r是因为在做换元法的时候需要乘以jacobi行列式.现在这两个积分都可以积出来了
第一个积分等于2pi,第二个积分用第一换元法把r放到微分里面就可以直接积分,得到-exp(-r^2/2),r从0到无穷大,所以值为-exp(无穷大) + exp(0) = 1
所以原式 = 2pi * 1 = 2pi
所以你要求的积分等于(2pi)^(1/2)

其中jacobi行列式的计算如下

也能够用面积计算的方式去理解rdrd\theta


网上以为网友的提问的截图,其实就可以利用二次项和一次项合并,以及上述证明的公式,最终推导出结果。

  • 1
    点赞
  • 2
    评论
  • 5
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值