浅述雅可比矩阵(jacobi matrix)与雅克比行列式(Jacobian )(写给自己和菜鸟看的)

0.菜鸟预知识

0.1矩阵

定义:
由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:
在这里插入图片描述基本运算:

  • 加法:

    • 加法
  • 减法:

    • List item
  • 数乘:在这里插入图片描述

  • 转置:在这里插入图片描述

  • 共轭:在这里插入图片描述

  • 共轭转置:在这里插入图片描述

0.2矩阵乘法

两个矩阵的乘法仅当第一个矩阵A的列数另一个矩阵B的行数相等时才能定义:

如A是m×n矩阵和B是n×p矩阵,它们的乘积C是一个m×p矩阵 ,它的一个元素:在这里插入图片描述例:在这里插入图片描述

0.3矩阵行列式

一个n×n的正方矩阵A的行列式记为det(A)或者|A| ,一个2×2矩阵的行列式可表示如下:在这里插入图片描述一个n×n矩阵的行列式等于其任意行(或列)的元素与对应的代数余子式乘积之和,即:

在这里插入图片描述

0.4 雅克比矩阵、雅克比行列式

在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵:

在这里插入图片描述
符号表示为:在这里插入图片描述

  • 根据反函数定理,一个可逆函数(存在反函数的函数)的雅可比矩阵的逆矩阵即为该函数的反函数的雅可比矩阵。
  • 如果这个矩阵为方阵,那么这个方阵的行列式叫雅可比行列式

0.5切空间

切空间是在某一点所有的切向量组成的线性空间。

0.6 欧式空间和非欧式空间

1.欧式空间:

  • 欧几里得几何就是中学学的平面几何、立体几何,在欧几里得几何中,平行线任何位置的间距相等。

  • 欧几里得空间就是在对现实空间的规则抽象和推广(从n<=3推广到有限n维空间)。

  • 中学学的几何空间一般是2维,3维(所以,我们讨论余弦值、点间的距离、内积都是在低纬空间总结的),如果将这些低维空间所总结的规律推广到有限的n维空间,那这些符合定义的空间则被统称为欧几里得空间(欧式空间,Euclidean
    Space)

2.关于非欧式空间:
非欧几何,爱因斯坦曾经形象地说明过:

假定存在一种二维扁平智能生物,但它们不是生活在绝对的平面上,而是生活在一个球面上,那么,当它们在小范围研究圆周率的时候,会跟我们一样发现圆周率是3.14159……可是,如果它们画一个很大的圆,去测量圆的周长和半径,就会发现周长小于2πr,圆越大,周长比2πr小得越多,为了能够适用于大范围的研究,它们就必须修正它们的几何方法。如果空间有四维,而我们生活在三维空间中,而这个三维空间在空间的第四个维度中发生了弯曲,我们的几何就会象那个球面上的扁平智能生物一样,感受不到第四维的存在,但我们的几何必须进行修正,这就是非欧几何。在非欧几何中,平行的直线只在局部平行,就象地球的经线只在赤道上平行。

  • 闵可夫斯基空间属于欧几里得几何的扩展,它是把时间也作为一个维度进行量化,再添加光速系数,跟洛伦兹变换一样,使得不同惯性系中的运动问题计算得以简化。

1.理解

可以从导数的角度理解雅克比矩阵:

  • ①导数作为切空间上的线性映射(也就是说切空间的切向量可以由方向导数求得),可以选择适当的基底,表示切空间上点的坐标。
  • ②给出坐标基底后,线性的映射就都有了确切的坐标,那么线性映射就变成了一个实例化的矩阵。
  • ③在欧式空间中,这个矩阵就是雅克比矩阵。
  • ④当矩阵的行数和列数相等(也就是说函数的输入量和输出量等体量),此时为方阵,也就是雅克比行列式(Jacobian )。

2.雅克比矩阵的几何意义

一个词概括就是放大率

  • 换个词,就是说缩放因子

一句话概括就是n维空间,某点的邻域经过这个映射之后,测度与原来的比

  • 换句话说,就是原局部展成了新的线性变换,这个线性变换对原n维体积的改变比例
2.1二维情况下一个直观的栗子

在二维情况,雅可比行列式代表xy平面上的面积微元与uv平面上的面积微元的比值。
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
因此有二重积分换元:
在这里插入图片描述

3.机器人学中的应用

待填坑

reference:

  • https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
  • https://zhuanlan.zhihu.com/p/39762178
  • https://www.zhihu.com/question/27903807?sort=created
  • https://blog.csdn.net/linkequa/article/details/87311456?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-5.nonecase&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-5.nonecase
  • 百度百科
电力系统PQ分解潮流算法和牛顿拉夫逊潮流算法都是求解电力系统潮流分布的常用方法,但它们的求解思路和算法步骤有所不同。 PQ分解潮流算法是将节点功率方程分解为节点电压幅值和相位两个方程组,其中节点电压相位方程组为非线性方程组,可以使用迭代算法求解;节点电压幅值方程组为线性方程组,可以使用高斯消元法求解。而牛顿拉夫逊潮流算法则是直接迭代求解非线性节点功率方程组,每次迭代求解一个线性化的方程组,直到满足收敛条件。 PQ分解潮流算法的矩阵表达式为: $$\left[\begin{matrix} I & G \\ B & J \end{matrix}\right] \left[\begin{matrix} V \\ \theta \end{matrix}\right] = \left[\begin{matrix} P \\ Q \end{matrix}\right]$$ 其中,$I$为单位矩阵,$G$为导纳矩阵的实部,$B$为导纳矩阵的虚部,$J$为节点导纳矩阵的虚部,$V$为节点电压幅值,$\theta$为节点电压相角,$P$为节点有功功率注入值,$Q$为节点无功功率注入值。 PQ分解潮流算法的步骤如下: 1. 根据电力系统的拓扑结构,构建导纳矩阵$Y$和节点注入功率向量$S$。 2. 将导纳矩阵$Y$分解为实部$G$和虚部$B$。 3. 初始化节点电压幅值$V$和相角$\theta$。 4. 根据节点电压幅值$V$和相角$\theta$,计算节点注入功率向量$S$。 5. 将节点注入功率向量$S$分解为有功功率向量$P$和无功功率向量$Q$。 6. 解节点电压相位方程组得到相角$\theta$。 7. 解节点电压幅值方程组得到电压幅值$V$。 8. 如果电压幅值$V$和相角$\theta$的变化量小于设定的收敛阈值,则停止迭代,输出结果;否则,返回步骤4,继续迭代。 总体而言,PQ分解潮流算法适用于系统中存在大量无功负载的情况,收敛速度相对较快;而牛顿拉夫逊潮流算法适用于系统中存在大量有功负载的情况,可以保证全局收敛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值