
tensorflow
人工智能和FPGA AI技术
这个作者很懒,什么都没留下…
展开
-
[C 14:49:51.921 NotebookApp] Bad config encountered during initialization:
C:\Users\DELL>jupyter notebookC:\Users\DELL>jupyter --config-dirThe directory to use for notebooks and kernels.c.NotebookApp.notebook_dir = ‘C:\Users\DELL\Desktop’指向一个你电脑上有效的目录即可原创 2022-01-31 15:47:09 · 1046 阅读 · 1 评论 -
Vitis-AI 的量化实例
量化的两个文件input_fn.py# from resnet_v1_50_preprocessing import *# def eval_input(iter, eval_image_dir, eval_image_list, class_num, eval_batch_size): # images = [] # labels = [] # line = open(eval_image_list).readlines() # for index in range(0, eval原创 2021-07-11 22:18:36 · 2197 阅读 · 1 评论 -
Tensorflow官网例程学习记录 图片的四种显示方式 数据加强
print(image[0].shape)print(np.max(augmented_image[0],1).shape)两种显示方式plt.imshow(augmented_image[0].numpy().astype(“uint8”))plt.imshow(augmented_image[0] / 255))(160, 160, 3)(160, 3)np.max(a,1)np.argmax(a, 1)When you set layer.trainable = False, the原创 2020-09-15 21:29:04 · 5911 阅读 · 0 评论 -
数据集获取方式和数据加强方式
用minist.load.data()读取numpy数据直接送入model(x_train, y_train), (x_test, y_test) = mnist.load_data()x_train, x_test = x_train / 255.0, x_test / 255.0定义输入维数model = tf.keras.models.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)),tf.keras.layers.Dens原创 2020-09-15 17:41:18 · 5061 阅读 · 0 评论 -
配置阿里云docker Tensorflow镜像下载 dataset准备和地址 mnist_cnn.py例程
忽略告警import warningswarnings.filterwarnings(“ignore”)import osos.environ[“TF_CPP_MIN_LOG_LEVEL”] = “3”TensorFlow的日志级别分为以下三种:TF_CPP_MIN_LOG_LEVEL = 1 //默认设置,为显示所有信息TF_CPP_MIN_LOG_LEVEL = 2 //只显示error和warining信息TF_CPP_MIN_LOG_LEVEL = 3 //只显示error信息所以原创 2020-09-06 22:46:58 · 752 阅读 · 0 评论 -
ubuntu虚拟环境virtualenv, tf-nightly, efficientnet安装
因要用到efficientnet模型,现在这个模型只存在在tf-nightly版本中, 又不想破坏主环境,因此采用虚拟环境virtualenv来安装,而不是采用conda create.sudo apt-get install python-virtualenvvirtualenv -p /usr/bin/python3 tf2进入envsource ~/tf2/bin/activate查看虚拟环境下安装的所有的包 pip list查看虚拟环境重通过pip安装的包pip freezepip原创 2020-08-19 16:52:06 · 1187 阅读 · 0 评论 -
机器学习Highway网络结构
详解深度学习之经典网络架构(六):ResNet 两代(ResNet v1和ResNet v2)_chenyuping333的博客-CSDN博客_resnet v2 https://blog.csdn.net/chenyuping333/article/details/82344334网络加深,梯度消失为什么随着网络层级越深,模型效果却变差了呢?下图是一个简单神经网络图,由输入层、隐含层、输出层构成:回想一下神经网络反向传播的原理,先通过正向传播计算出结果output,然后与样本比较得出误差值E原创 2020-08-18 10:17:56 · 2054 阅读 · 0 评论 -
激活函数ReLU、Leaky ReLU、tanh(双曲正切函数Hyperbolic tangent function)
深度学习的激活函数 :sigmoid、tanh、ReLU 、Leaky Relu、RReLU、softsign 、softplus - 程序员大本营 https://www.pianshen.com/article/6147380115/数学表达式: y = max(0, x) + leak*min(0,x)与 ReLu 相比 ,leak 给所有负值赋予一个非零斜率, leak是一个很小的常数 \large a_{i} ,这样保留了一些负轴的值,使得负轴的信息不会全部丢失)#leakyRelu原创 2020-08-17 16:15:01 · 3618 阅读 · 0 评论 -
DepthwiseConv2D和Conv2D详解
depthwise_conv2d和conv2d的不同之处在于conv2d在每一深度上卷积,然后求和,depthwise_conv2d卷积,不求和。[https://www.cnblogs.com/itmorn/p/11250371.html]depthwise_conv2d如下张量x和卷积核K进行depthwise_conv2d卷积结果为:import tensorflow as tf# [batch, in_height, in_width, in_channels]input =t原创 2020-08-17 15:52:49 · 20734 阅读 · 2 评论 -
keras中h5模型保存和恢复方法 DenseNetX的完整例程
https://blog.csdn.net/mcyJacky/article/details/88706164模型保存model.save(‘model.h5’) # HDF5文件,pip install h5pyh5模型恢复和继续训练下面可以可以通过load_model()方法,对保存的模型进行恢复或者可以对模型进行继续训练。具体如下:import numpy as npfrom keras.datasets import mnistfrom keras.utils import np_ut原创 2020-08-12 16:58:10 · 3345 阅读 · 0 评论