Android 如何监听App的输入了那些内容

监听手机上任意一个App都输入了哪类内容,比如像QQ聊天等。其实Android给我们提供了一个辅助类AccessibilityService,这个类能干很多事情,模拟点击(比如自动抢红包实例,感谢CSDN_SXL:http://blog.csdn.net/csdn_sxl/article/details/50651959的博客),不过这里我们将监听输入字符。
很简单,创建一个实例GetInputChar继承AccessibilityService,重写onAccessibilityEvent方法

  @Override  
    public void onAccessibilityEvent(AccessibilityEvent event) {  
        try {  
            String inputChar= event.getText().get(0).toString();  
            Log.i(">>>>>>>", inputChar);
            AccessibilityNodeInfo rootNode = getRootInActiveWindow();   
        } catch (IndexOutOfBoundsException e) {  
            e.printStackTrace();  
        }     
    }

然后在Manifest中声明权限:

 <service  
            android:name="com.example.testgettext.GetInputChar"  
            android:enabled="true"  
            android:exported="true"  
            android:label="@string/app_name"  
            android:permission="android.permission.BIND_ACCESSIBILITY_SERVICE" >  
            <intent-filter>  
                <action android:name="android.accessibilityservice.AccessibilityService" />  
            </intent-filter>  

            <meta-data  
                android:name="android.accessibilityservice"  
                android:resource="@xml/accessibility" />  
        </service> 

在我们的res文件目录下建立一个xml文件夹,创建一个accessibility.xml文件,内容如下:

<?xml version="1.0" encoding="utf-8"?>  
<accessibility-service xmlns:android="http://schemas.android.com/apk/res/android"  
    android:accessibilityEventTypes="typeViewFocused|typeViewTextChanged"  
    android:accessibilityFeedbackType="feedbackVisual"  
    android:canRetrieveWindowContent="true"  
    android:description="@string/aaa"
    android:packageNames="xxx.xxx.xxx"
    android:notificationTimeout="100" /> 

这里的packageNames上指定,你想要监控APP的包名。就OK了。
安装好app之后,到设置->辅助功能:刚刚安装的App打开即可。

### 关于深度学习模块的学习资源 对于希望深入理解并掌握深度学习模块的人士而言,存在多种优质的学习资源可供利用。 #### 1. Python 基础知识 由于大多数现代深度学习框架均基于 Python 开发,因此具备扎实的 Python 编程技能至关重要。推荐观看由黑马程序员提供的《8天Python从入门到精通》系列教程[^3]。此课程全面覆盖了 Python 的核心概念和技术要点,适合初学者快速上手编程语言的基础部分。 #### 2. 深度学习理论与实践指南 针对具体应用领域——如遥感影像处理中的目标识别任务,则可参考《ENVI 深度学习 V1.2 操作教程》,该文档不仅介绍了如何配置环境、准备数据集等内容,还详细描述了模型构建流程及其优化技巧,有助于使用者更好地理解和运用相关技术解决实际问题[^4]。 #### 3. 实战案例研究 完成初步培训之后,可以通过练习真实世界的项目来巩固所学的知识点。例如,在完成了基本的对象检测算法开发后,尝试将其应用于不同的场景下测试效果,并不断调整参数直至获得满意的结果[^2]。 ```python import torch from torchvision import models, transforms from PIL import Image # 加载预训练模型 model = models.resnet50(pretrained=True) transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), ]) image_path = 'example.jpg' img = Image.open(image_path).convert('RGB') input_tensor = transform(img).unsqueeze(0) with torch.no_grad(): output = model(input_tensor) print(output) ``` 上述代码展示了如何使用 PyTorch 和 torchvision 库加载一个预先训练好的 ResNet-50 模型并对单张图片执行分类预测操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值