首先介绍算法思路:图像对应方向的投影,就是在该方向取一条直线,统计垂直于该直线(轴)的图像上的像素的黑点数量,累加求和作为该轴该位置的值;基于图像投影的切割就是将图像映射成这种特征后,基于这种特征判定图像的切割位置(坐标),用这个坐标来切割原图像,得到目标图像。
java代码实现:
java的图像处理,这里大部分是由im.read读取,bufferedimage,然后转为二值bitset做处理(0,1或者说是true和false,一个bitset是整张图片的0,1像素值的一维行向量。bitset.length=width*height)
/**
* 图像向x轴做投影后的数组
*
* @param imagedata
* @param w
* @param h
* @return
*/
public static int[] xpro(BitSet bitSet, int w, int h) {
int xpro[] = new int[w];
for (int j = 0; j < w; j++) {
for (int i = 0; i < h; i++) {
if (bitSet.get(i * w + j) == true)
xpro[j]++;
}
}
return xpro;
}
/**
* 图像向y轴做投影后的数组
*
* @param imagedata
* @param w
* @param h
* @return
*/
public static int[] ypro(BitSet bitSet, int w, int h) {
int ypro[] = new int[h];
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
if (bitSet.get(i * w + j) == true)
ypro[i]++;
}
}
return ypro;
}
简单的基于投影的图像分割:
public static Rectangle[] yproSegment(int[] ypro, int w, int h) {
int[] L = new int[h - 1];// 左割线集合,最多n-1条分割线,且左分割第一项取0,即图片第一行做起点(需要a行位置没有太多空白噪声)
int[] R = new int[h - 1];// 右割线集合
// 两种情况:sku区域起始位置元素为空白区域;起始位置含字符元素
int k1 = 0;
int k2 = 0;
if (ypro[0] == 0) {
k1 = 0;
k2 = 0;
for (int i = 4; i < h; i++) {
if (ypro[i] > 0 && ypro[i - 1] > 0 && ypro[i - 2] > 0
&& ypro[i - 3] > 0 && ypro[i - 4] == 0) {
L[k1] = i - 3;
k1++;