【pandas】(七)df.apply(lambda表达式)

一、pandas.apply()

1.1遍历DataFrame的元素(一行数据或者一列数据)

dataframe.apply(function,axis)对一行或一列做出一些操作(axis=1遍历行,axis=0遍历列)

1.1.1 行遍历

在这里插入图片描述

1.1.2 列遍历

默认列遍历
在这里插入图片描述

1.2遍历Series的元素(单个数据)

在这里插入图片描述

二 lambda表达式

函数式编程,使得apply()处理数据时,参数可以传函数。

2.1 python内置函数

默认列遍历
在这里插入图片描述

2.2 自定义处理流程

2.2.1 if else

一般情况下:

if 条件1:
    语句1
elif 条件2:
    语句2
else:
    语句3

但如果要使用lambda一行表示if多条件,则:

lambda x: 语句1 if 条件1 else ( 语句2 if 条件2 else 语句3 )

在这里插入图片描述

2.2.2 自定义函数

在这里插入图片描述

### 关于 `pandas` DataFrame 的 `apply()` 方法与 `lambda` 函数结合使用 在处理数据时,`pandas` 提供了强大的工具集用于操作和转换数据。其中,`df.apply()` 是一种常用的方法,它允许用户沿着轴向应用任意 Python 函数到每一列或行上。当与 `lambda` 表达式一起使用时,则可以实现更加简洁高效的自定义逻辑。 #### 基本语法结构 对于简单的数值运算或者其他不需要显式命名的情况来说,利用匿名函数即 `lambda` 可以简化代码编写过程: ```python import pandas as pd # 构建一个简单的DataFrame实例 data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35], 'Salary': [70000, 80000, 90000]} df = pd.DataFrame(data) # 应用lambda表达式增加新列'Bonus'表示工资的10%作为奖金 df['Bonus'] = df['Salary'].apply(lambda x: round(x * 0.1)) print(df) ``` 这段代码创建了一个新的名为 `'Bonus'` 的列,该列表示每位员工薪水金额的百分之十,并四舍五入取整数[^3]。 #### 复杂场景下的运用 除了基本的数据变换外,在更复杂的业务需求面前也可以借助 `lambda` 和其他辅助库完成任务。比如下面的例子展示如何基于条件判断给定字符串前缀: ```python def add_prefix_if_needed(value): """如果长度小于等于4则加上'Mr.' 或者 'Ms.', 否则保持不变""" prefix = "Mr." if value.endswith('s') else "Ms." return f"{prefix} {value}" if len(str(value)) <= 4 else str(value) # 对姓名字段添加适当称呼 df['Full Name'] = df['Name'].apply(add_prefix_if_needed) print(df[['Name', 'Full Name']]) ``` 这里定义了一个常规函数来进行更为细致的操作;而实际项目开发过程中往往倾向于采用内联形式——也就是直接写成 `lambda` 形式的参数传递进去,从而进一步提升可读性和执行效率。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值