关于Wasserstein GAN的理解

看了知乎文章令人拍案叫绝的Wasserstein GAN,记录一下自己的WGAN的理解

  1. 首先WGAN使用Wasserstein距离作为损失函数对模型进行训练,然而这个Wasserstein距离的具体公式是什么不知道,所以需要使用判别器来拟合这个公式。
  2. 拟合出来Wasserstein距离以后,接着使用生成器来缩小这个Wasserstein距离

这就是WGAN的整体思路。

太懒了,就不编辑公式了,直接截图过来
请添加图片描述
而判别器所要拟合的就是公式中的 f w f_w fw,这里的W是求最大值,而深度学习是求最小值。因此在WGAN的模型中训练判别器的模型是对其取反,如下所示
请添加图片描述
在得到了Wasserstein距离后,使用生成器开始对其进行最小化操作,公式如下所示
请添加图片描述

以后有新的理解,再来补充

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Wasserstein GAN是一种生成对抗网络GAN)的变体,具有较强的生成能力和稳定性。下面将用300字中文回答Wasserstein GAN的PyTorch代码。 Wasserstein GAN的目标是最小化真实分布和生成分布之间的Wasserstein距离,通过判别器将生成的样本与真实样本进行比较。在PyTorch中,实现Wasserstein GAN的代码如下: 首先,导入PyTorch库和其他必要的依赖项,并设置超参数。然后,定义生成器和判别器的网络结构。生成器负责将随机噪声转换为与真实样本类似的数据,判别器则判断输入数据是真实样本还是生成样本。 接下来,定义生成器和判别器的损失函数。对于生成器来说,它的目标是使判别器无法区分生成样本和真实样本,因此损失函数取生成样本在判别器输出的平均值。对于判别器来说,它的目标是将真实样本的输出值调整为正的,将生成样本的输出值调整为负的,因此损失函数取输出值之间的差值的均值。 接着,定义生成器和判别器的优化器,并开始训练过程。首先,更新判别器的参数,通过前向传播和反向传播计算梯度,然后优化器根据梯度更新参数。然后,更新生成器的参数,使用生成样本的损失计算生成器的梯度,并用优化器进行参数更新。 最后,通过生成器生成一定数量的样本,并通过可视化技术观察生成的样本的质量和多样性。 以上是关于Wasserstein GAN的PyTorch代码的概述,具体的实现细节可以参考相关的代码库和教程。通过理解和实践这些代码,可以更好地理解和运用Wasserstein GAN来提高生成模型的表现。 ### 回答2: Wasserstein GAN (WGAN) 是一种生成对抗网络,它通过最小化真实样本和生成样本之间的Wasserstein距离来进行训练。在这里,我将简要介绍如何使用PyTorch编写Wasserstein GAN的代码。 首先,我们需要导入PyTorch库和其他必要的包: ``` import torch import torch.nn as nn import torch.optim as optim ``` 接下来,我们可以定义生成器(Generator)和判别器(Discriminator)的网络架构。生成器负责从随机噪声生成假样本,判别器负责区分真实样本和生成样本。这里,我们使用全连接层作为网络的基本组件,你也可以根据实际需求进行改变。 ``` class Generator(nn.Module): def __init__(self, input_dim, output_dim): super(Generator, self).__init__() self.fc = nn.Sequential( nn.Linear(input_dim, 128), nn.ReLU(), nn.Linear(128, output_dim), nn.Tanh() ) class Discriminator(nn.Module): def __init__(self, input_dim): super(Discriminator, self).__init__() self.fc = nn.Sequential( nn.Linear(input_dim, 128), nn.ReLU(), nn.Linear(128, 1), ) ``` 然后,我们可以定义WGAN的损失函数,这里使用负的Wasserstein距离作为损失。同时,我们还需要定义生成器和判别器的优化器。 ``` def wasserstein_loss(real_samples, fake_samples): return torch.mean(real_samples) - torch.mean(fake_samples) generator = Generator(input_dim, output_dim) discriminator = Discriminator(input_dim) generator_optimizer = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999)) discriminator_optimizer = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999)) ``` 接下来,我们可以进行训练循环。在每个训练周期中,我们先使用生成器生成假样本,再将真实样本和假样本分别输入判别器,并计算损失。然后,我们根据损失更新生成器和判别器的权重。 ``` for epoch in range(num_epochs): for i, real_samples in enumerate(data_loader): # Generate fake samples z = torch.randn(real_samples.size(0), input_dim) fake_samples = generator(z) # Discriminator forward and backward discriminator_real = discriminator(real_samples) discriminator_fake = discriminator(fake_samples) discriminator_loss = wasserstein_loss(discriminator_real, discriminator_fake) discriminator.zero_grad() discriminator_loss.backward() discriminator_optimizer.step() # Generator forward and backward fake_samples = generator(z) discriminator_fake = discriminator(fake_samples) generator_loss = -torch.mean(discriminator_fake) generator.zero_grad() generator_loss.backward() generator_optimizer.step() ``` 最后,我们可以使用训练好的生成器来生成新的样本: ``` with torch.no_grad(): z = torch.randn(num_samples, input_dim) generated_samples = generator(z) ``` 这就是使用PyTorch编写Wasserstein GAN的基本步骤。通过调整网络架构、损失函数和训练参数,你可以进一步优化模型的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值