sk-learn实现L2岭回归,对线性回归正则化

岭回归算法:

 

from sklearn.datasets import load_boston
from sklearn.externals import joblib
from sklearn.linear_model import Ridge, RidgeCV
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler



def liner_ridge():
    '''
    岭回归
    :return: 
    '''

    #1.获取数据
    data = load_boston()

    #2.数据集划分
    x_train,x_test,y_train,y_test = train_test_split(data.data,data.target,random_state&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值