强化学习入门:使用Python和Q-learning算法解决迷宫问题

本文介绍了如何运用强化学习中的Q-learning算法解决迷宫问题。通过Python编程,定义迷宫环境,初始化Q-table,实现Q-learning算法,并用可视化展示智能体的学习过程和最优策略。
摘要由CSDN通过智能技术生成

文章标题:强化学习入门:使用Python和Q-learning算法解决迷宫问题

简介

强化学习是机器学习中的一个重要分支,它致力于研究智能体在与环境交互的过程中如何学习最优的行为策略。Q-learning算法是强化学习中的一个经典算法,它通过不断地探索和利用环境来学习最优的行为策略。本文将介绍如何使用Python编程语言和Q-learning算法解决迷宫问题,并通过可视化展示智能体学习过程。

1. 准备工作

首先,确保你已经安装了Python。我们将使用Python编写Q-learning算法,并通过Matplotlib库进行可视化展示。

import numpy as np
import matplotlib.pyplot as plt
2. 定义迷宫环境

接下来,我们需要定义一个迷宫环境,包括迷宫的大小、起点、终

人工智能大作业-基于强化学习求解迷宫问题python实现源码+项目说明+实验报告+可执行文件 【项目介绍】 该资源内项目代码都是经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶, 或者实际项目借鉴参考! 当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。如果基础还行,也可在此代码基础上进行修改,以实现其他功能。 强化学习求解迷宫问题 核心代码 - maze.py: 迷宫类的实现,迷宫信息用一个二维数组表示,数组中的每个数代表一个方格,数字值代表方格类型(如0表示墙, 2表示陷阱, 3表示火)。 - train_qtable.py: Q表类的实现,Q表类有Q值的存储,决策的进行,Q表的学习等功能函数,进行预测和学习时会与迷宫(“环境”)进行交互,对其输入动作,得到反馈。 - train_network.py: 监督学习模型的学习,预测等实现。 - git.py: 监督学习用到的批量式学习仓库。 - maze_map.py: 存储6个事先定义好的迷宫 - draw.py: Q表的可视化以及完整走迷宫过程的呈现。 UI代码 - ui.py: 顶层窗口,有两个标签页 - ui_basic.py: “已有迷宫”标签页的实现,用户可以从我们定义好的几个迷宫中选择一个,进行训练并查看完整的走迷宫过程。 - ui_userDefine.py:“用户自定义”标签页的实现,用户可以输入任意大小的迷宫,自定义火焰周期,训练次数上限。之后进行训练,并以三种不同的速度查看完整的走迷宫结果。 - draw_ui.py: 在ui界面绘制Q表和走迷宫过程。 运行方法 - 打开“可执行文件/ui.exe” - 运行“代码/ui.py” - 运行“代码/train_qtable.py”,对maze_map中定义的迷宫进行训练,训练结束后显示Q表和完整走迷宫过程。 编译运行环境 python 3.6, pyqt 5.13.1, matplotlib 3.0.2, numpy 1.15.2, Pyinstaller 3.5
好的,下面是Python实现Q-learning迷宫的代码: ```python import numpy as np import random # 定义迷宫结构 maze = np.array([ [0, -1, 0, 0, 0, 0, 0, 0, 0, 0], [0, -1, 0, -1, -1, -1, 0, -1, -1, 0], [0, -1, 0, -1, 0, -1, 0, -1, 0, 0], [0, -1, -1, 0, 0, -1, 0, -1, 0, 0], [0, 0, 0, -1, -1, -1, 0, -1, -1, 0], [0, 0, 0, 0, 0, 0, 0, 0, -1, 0], [0, -1, -1, -1, -1, -1, -1, -1, -1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ]) # 定义状态数量 states = maze.shape[0] * maze.shape[1] # 定义动作数量 actions = 4 # 定义学习率 alpha = 0.1 # 定义折扣因子 gamma = 0.9 # 定义探索率 epsilon = 0.1 # 定义Q值表 q_table = np.zeros((states, actions)) # 定义状态转换函数 def state_transition(state, action): row = state // maze.shape[1] col = state % maze.shape[1] if action == 0: # 上 if row == 0 or maze[row-1, col] == -1: return state else: return state - maze.shape[1] elif action == 1: # 下 if row == maze.shape[0]-1 or maze[row+1, col] == -1: return state else: return state + maze.shape[1] elif action == 2: # 左 if col == 0 or maze[row, col-1] == -1: return state else: return state - 1 elif action == 3: # 右 if col == maze.shape[1]-1 or maze[row, col+1] == -1: return state else: return state + 1 # 定义选择动作函数 def choose_action(state): if random.uniform(0, 1) < epsilon: return random.randint(0, actions-1) else: return np.argmax(q_table[state]) # 定义Q-learning算法函数 def q_learning(): for i in range(10000): state = random.randint(0, states-1) while state // maze.shape[1] != 0 or state % maze.shape[1] == 0 or state % maze.shape[1] == maze.shape[1]-1: state = random.randint(0, states-1) for j in range(100): action = choose_action(state) next_state = state_transition(state, action) reward = -1 if next_state // maze.shape[1] == maze.shape[0]-1 and next_state % maze.shape[1] != 0 and next_state % maze.shape[1] != maze.shape[1]-1 else 0 q_table[state, action] = q_table[state, action] + alpha * (reward + gamma * np.max(q_table[next_state]) - q_table[state, action]) state = next_state # 执行Q-learning算法 q_learning() # 输出Q值表和策略 print(q_table) policy = np.zeros((maze.shape[0], maze.shape[1])) for i in range(maze.shape[0]): for j in range(maze.shape[1]): if maze[i, j] != -1: policy[i, j] = np.argmax(q_table[i*maze.shape[1]+j]) print(policy) ``` 在这个代码中,我们首先定义了一个迷宫的结构,然后定义了状态数量、动作数量、学习率、折扣因子和探索率等参数。接着定义了状态转换函数、选择动作函数和Q-learning算法函数。在Q-learning算法函数中,我们使用了10000次迭代和100步每次迭代的方式进行训练,对于每个状态和动作组合,我们都更新了对应的Q值。最后输出了Q值表和策略。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Evaporator Core

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值