1th Nov,金融数据作业

金融数据分析第一次作业

1.1题

  • 分析

(1)我们使用fBasics进行简单收益率的描述性统计;
(2)分析简单收益率与对数收益率的关系,我们有
logR=log(R+1) ,将转换的数据用该包进行的描述性统计;
(3)使用R语言自带的t.test进行t检验;

  • 代码
library('fBasics')
axp<-read.table("/Users/ZHU/Desktop/学习资料/金融数据分析/data/ch1data/d-axp3dx-0111.txt",header=T);
logaxp<-log(axp$axp + 1);
logvw<-log(axp$vw + 1);
logew<-log(axp$ew + 1);
logsp<-log(axp$sp + 1);
logdata<-cbind(axp$date,logaxp,logvw,logew,logsp);
logdata<-as.data.frame(logdata)
smry<-basicStats(logdata[,c(2,3,4,5)])
t.test(logdata$logaxp)
  • 结果
    简单收益率的各项统计指标:
    简单收益率
    对数收益率:
    对数收益率描述性统计
    t检验结果:

    One Sample t-test
    data: logdata$logaxp
    t = 0.35999, df = 2534, p-value = 0.7189
    alternative hypothesis: true mean is not equal to 0
    95 percent confidence interval:
    -0.0008360686 0.0012120714
    sample estimates:
    mean of x
    0.0001880014
    ``

    从结果来看,axp的对收益率在95%的置信区间内,不能拒绝原假设,我们认为其收益率可以认为是零。
    1.3题
  • 分析
    对这三个指标分别进行t-test,其中偏度和峰度的检验需要根据其枢轴量的分布自己构造t-statistics,在计算p值时我用了正态分布的分位数,在数据量较大时我们知道t分布是渐进趋向正态分布的。

  • 代码

 library("timeDate")
library("timeSeries")
library('fBasics')
ge<-read.table("/Users/ZHU/Desktop/学习资料/金融数据分析/data/ch1data/m-ge3dx-4011.txt",header=T);
t.test(ge)
skewtest(ge)
kurtuosis_test(ge)
skewtest <- function(ts){
    s <- skewness(ts)
    T <- length(ts)
    if(T < 30)
        print("Warning:insufficient sample,the p-value may heavily biased!")
    t3 <- s/sqrt(6/T)
    pp <- 2*(1 - pnorm(t3))
    return(pp)
}

kurtuosis_test <- function(ts){
    s <- kurtosis(ts)
    T <- length(ts)
    if(T < 30)
        print("Warning:insufficient sample,the p-value may heavily biased!")
    t4 <- s/sqrt(24/T)
    pp <- 2*(1 - pnorm(t4))
    return(pp)
}
  • 结果
    我们算得三个指标的P值分别为:3.386e-06,0.5363498,1.136868e-13,所以我们得到结论收益率序列收益率显著不为零,但是没有明显的不对称,但是显著厚尾。

2.1
(a)我们将失业率画出来,发现是一个有截距没有趋势的图形,所以我们选定了ADF检验的方法,使用ar模型拟合确定阶数为11阶,代码如下:

library("urca")
library("fUnitRoots")
uepm<-read.table("/Users/ZHU/Desktop/学习资料/金融数据分析/data/ch2data/m-unrate-4811.txt",head=T)
urate <- uepm$rate
plot(urate,type="l")
acf(urate);pacf(urate)
m1 <- ar(diff(urate),method='mle');
adfTest(urate,lags=m1$order,type(c("c")));

得到的结果为:

itle:
 Augmented Dickey-Fuller Test

Test Results:
  PARAMETER:
    Lag Order: 12
  STATISTIC:
    Dickey-Fuller: -2.72
  P VALUE:
    0.07501  

所以我们知道,不能拒绝原假设,说明我们不能拒绝这是一个单位根过程的假设。

(b)首先对失业率画出ACF与PACF图,发现ACF拖尾而PACF截尾,但是ACF表现为收敛于零的速度非常的慢,100阶后才不显著异于0。
尝试长记忆模型,模型拟合非常显著。代码如下:

library("TSA")
durate<-diff(urate)
m1=ar(durate,method="mle")
m1$order
print(durate$aic,digits=3)
m2=arima(x=urate,order=c(12,1,0),fixed=c(0,NA,NA,NA,NA,0,0,0,0,NA,0,NA))
tsdiag(m2)
test<-Box.test(m2$residuals,lag=30,type='Ljung')
1-pchisq(test$X-square,24)
m4=fracdiff(urate,nar=1,nma=1)
summary(m4)

差分方程的结果是:

Call:
  fracdiff(x = urate, nar = 1, nma = 1) 
Coefficients:
    Estimate Std. Error z value Pr(>|z|)    
d  0.2648840  0.0009471  279.69   <2e-16 ***
ar 0.9650814  0.0368789   26.17   <2e-16 ***
ma 0.1561706  0.0096425   16.20   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
sigma[eps] = 0.2070408 
[d.tol = 0.0001221, M = 100, h = 1.268e-06]
Log likelihood: 119.3 ==> AIC = -230.6804 [4 deg.freedom]

但是差分不能预测,所以我们还是要用airma建模,首先对原始数据进行差分,然后通过AIC给模型定阶,我们看到:
这里写图片描述
差分的后的图有明显的12阶周期性,再结合ACF5阶显著,PACF指数衰减,我们建立的模型为: ARIMA(1,1,5)(1,0,1)12
观察第一次回归后系数的显著效果,结果为:

Call:
arima(x = da$rate, order = c(1, 1, 5), seasonal = list(order = c(1, 0, 1), period = 12), 
    include.mean = F, fixed = c(NA, NA, NA, 0, 0, NA, NA, NA))

Coefficients:
         ar1      ma1     ma2  ma3  ma4     ma5    sar1     sma1
      0.7536  -0.7744  0.2351    0    0  0.0990  0.6051  -0.8525
s.e.  0.0569   0.0650  0.0365    0    0  0.0386  0.0654   0.0457

sigma^2 estimated as 0.03649:  log likelihood = 175.75,  aic = -337.5

模型检验也是充分的,如图:
这里写图片描述
用模型进行4期预测有:

模型 1 2 3 4
Pred 9.513730 9.498022 9.384609 9.450147
s.e. 0.1910190 0.2673454 0.3519905 0.4379314

(c)存在商业周期,为12期。
2.2
(a)对数据进行Ljung-Box检验,我们得出结论,dec2不能拒绝ACF全为0,dec显著不为零。
(b)使用TSA包计算出dec2序列的EACF值,我们看图:

AR/MA
  0 1 2 3 4 5 6 7 8 9 10 11 12
0 x o o o o o o o o o o  o  o 
1 x o o o o o o o o o o  o  o 
2 x x o o o o o o o o o  o  o 
3 x o x o o o o o o o o  o  o 
4 x o x o o o o o o o o  o  o 
5 x x x x x o o o o o o  o  o 
6 x x o x o x o o o o o  o  o 

所以我们认为这个三角形的顶点在ARMA(0,1)的位置,对模型进行拟合,我们得到结果以及检验:

Call:
arima(x = crsp$dec2, order = c(0, 0, 1), method = "ML")

Coefficients:
         ma1  intercept
      0.1307     0.0093
s.e.  0.0425     0.0022

sigma^2 estimated as 0.002223:  log likelihood = 996.04,  aic = -1988.08

所以模型为 xt=0.0093+ϵt0.1307

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值