知识蒸馏

知识蒸馏

一. Distilling the Knowledge in a Neural Network

知识蒸馏的开端之作,简单叙述蒸馏过程:

  • 先训练一个大网络,比如Resnet50用于分类任务
  • 搭建一个小网络训练结构,比如mobilenetV2
  • 训练小网络的同时推理大网络,大网络的结果去指导小网络(KDLoss用于估计分布的相似性)

类似的代码:链接地址

类似的文章:链接地址

比较简单的过程:

# 教师输出和学生输出得到loss1,学生输出和label得到loss2,按一定比例结合进行反向传播
def loss_fn_kd(outputs, labels, teacher_outputs, params):
    """
    Compute the knowledge-distillation (KD) loss given outputs, labels.
    "Hyperparameters": temperature and alpha
    NOTE: the KL Divergence for PyTorch comparing the softmaxs of teacher
    and student expects the input tensor to be log probabilities! See Issue #2
    """
    alpha = params.alpha
    T = params.temperature
    KD_loss = nn.KLDivLoss()(F.log_softmax(outputs/T, dim=1),
                             F.softmax(teacher_outputs/T, dim=1)) * (alpha * T * T) + \
              F.cross_entropy(outputs, labels) * (1. - alpha)

    return KD_loss

二. Fast Human Pose Estimation Pytorch

论文:链接地址

代码:链接地址

论文没有实质的创新,KDLoss直接使用MSE对Heatmap进行分布相似估计,正常Loss也使用MSE,按一定比例结核即可

注释:看见有人说蒸馏必须网络结构类似,不然效果反而会下降(待尝试)

# 关键点不可见的情况下只进行KDLoss,可见的情况下进行KDLoss和正常训练Loss
for j in range(0, len(output)):
  	_output = output[j]
  	for i in range(gtmask.shape[0]):
          if gtmask[i] < 0.1:
          # unlabeled data, gtmask=0.0, kdloss only
          # need to dividen train_batch to keep number equal
          kdloss_unlabeled += criterion(_output[i,:,:,:], toutput[i, :,:,:])/train_batch
      	else:
          # labeled data: kdloss + gtloss
          gtloss += criterion(_output[i,:,:,:], target_var[i, :,:,:])/train_batch
          kdloss += criterion(_output[i,:,:,:], toutput[i,:,:,:])/train_batch

loss_labeled = kdloss_alpha * (kdloss) + (1 - kdloss_alpha)*gtloss
total_loss   = loss_labeled + unkdloss_alpha * kdloss_unlabeled
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值