卷积神经网络 - 卷积池化

卷积神经网络
卷积神经网络(CNN)由输入层,卷积层,激活函数,池化层,全连接层组成。
Input - Conv - Relu - Pool - Fc

  1. 卷积层:用于特征的提取
    卷积层:
    输入图像是32 * 32 * 3(R,G,B),用一个5 * 5 * 3 的filter【注意,两个3必须相同】,得到一个28 * 28 * 1 的特征图。
    如何由32经由5得到28? 以5经由3得到3为例解释如下:
    这里写图片描述

通常我们会使用多层的卷积得到更深层次的特征。
2. zero pad
为图像加上一个边界,边界元素为0,使得输入图像和卷积之后的特征图维度相同。
例如输入5* 5 * 3, filter 3* 3* 3 ,加上zero pad (5-3)之后变为7 * 7 * 3 ,卷积之后的特征图大小为(5+2-3+1) 5 * 5 * 3
3. 池化层
对输入的特征图进行压缩,使得特征图减小,简化网络计算的复杂度,同时进行特征压缩,提取主要特征。
池化操作如下:对不同位置的特征进行聚合统计。
这里写图片描述
池化有两种:Avy pooling, Max pooling
Max pooling 如下:max pooling 是在每一个区域取最大值,stride=2. 一般filter取2 * 2,stride取2压缩为原来的1/4, pooling 使得特征图缩小,会影响网络图的精度,可以通过增加图的深度来弥补。
Avy pooling 是取每一个区域的平均值。

4.全连接层
连接所有的特征,将输出值送给分类器(例如softmax分类器)

总体结构如下:
这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值