数据分析-day03-pandas-series的操作

Series是一种类似一维数组的数据结构,由一组数据和与之相关的index组成,这个结构一看似乎与dict字典差不多,我们知道字典是一种无序的数据结构,而pandas中的Series的数据结构不一样,它相当于定长有序的字典,并且它的index和value之间是独立的,两者的索引还是有区别的,Series的index是可变的,而dict字典的key值是不可变的。

简而言之:series对象本质上有两个数组组成,一个数组构成数组的索引,一个数组构成对象的值。

#!usr/bin/env python
#-*- coding:utf-8 _*-
'''
@author:Administrator
@file: pandas_series_demo.py
@time: 2020-01-01 下午 3:25
'''
import string

import pandas as pd;
import numpy as np;
#series的创建
data = pd.Series([1,2,3,4],index = ['a','b','c','d'])
print(data);
t=pd.Series(np.arange(10),index=list(string.ascii_uppercase[:10]));
print(t);
#index,values
print(t.index,t.values)
#通过切片或者索引获取数据
print("========获取数据=========")
print(t[:2])
#start,end ,步长
print(t[1:5:2]);
#通过标签获取
print(t[["A","E"]]);
#通过元素的值判断
print(t[t>5]);

结果:

a    1
b    2
c    3
d    4
dtype: int64
A    0
B    1
C    2
D    3
E    4
F    5
G    6
H    7
I    8
J    9
dtype: int32
Index(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'], dtype='object') [0 1 2 3 4 5 6 7 8 9]
========获取数据=========
A    0
B    1
dtype: int32
B    1
D    3
dtype: int32
A    0
E    4
dtype: int32
G    6
H    7
I    8
J    9
dtype: int32

Process finished with exit code 0
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值