【Google 机器学习笔记】九、神经网络

本文介绍了神经网络的基本概念,包括人工神经元模型、激活函数、反向传播算法及其挑战,如梯度消失和梯度爆炸。此外,还探讨了多类别神经网络的Softmax函数和嵌入(Embedding)技术在处理大规模输入和语义相似性中的作用。文章适合对机器学习有一定基础的读者,旨在帮助理解神经网络的工作原理。
摘要由CSDN通过智能技术生成

【Google 机器学习笔记】

九、神经网络

  对于复杂的非线性规律,若使用特征组合常常难以准确地进行预测,此时,常使用人工神经网络(Artificial Neural Network, 简称ANN,神经网络) 进行建模。


神经网络简介

  神经网络是对人脑自然神经网络 若干基本特性抽象和模拟,由大量神经元组成的非线性动力系统。

  • 人工神经元模型
    人工神经元模型
    (图片来源网络,侵删)

       x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn 表示输入值。
       ω 1 , ω 2 , ⋯   , ω n \omega_1,\omega_2,\cdots,\omega_n ω1,ω2,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值