数据结构----图

图的定义

图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:
G = ( V , E ) G=(V, E) G=(V,E)
其中:G表示一个图,V是图G中顶点的集合,E是图G中顶点之间边的集合。

 

在线性表中,元素个数可以为零,称为空表;

在树中,结点个数可以为零,称为空树;

在图中,顶点个数不能为零,但可以没有边。(没有空图的概念)

 

图的逻辑结构

若顶点 v i v_i vi v j v_j vj之间的边没有方向,则称这条边为无向边,表示为 ( v i , v j ) (v_i,v_j) (vi,vj)
如果图的任意两个顶点之间的边都是无向边,则称该图为无向图
在这里插入图片描述

若从顶点v,到v,的边有方向,则称这条边为有向边,表示为<vi,v>。
如果图的任意两个顶点之间的边都是有向边,则称该图为有向图

在这里插入图片描述

图的基本术语

简单图:在图中,若不存在顶点到其自身的边,且同一条边不重复出现。

在这里插入图片描述

数据结构中讨论的都是简单图。

 

邻接,依附

无向图

无向图中,对于任意两个顶点 v i v_i vi,和顶点 v j v_j vj,若存在边 ( v i , v j ) (v_i,v_j) (vi,vj),则称顶点 v i v_i vi,和顶点 v j v_j vj,互为邻接点,同时称边 ( v i , v j ) (v_i,v_j) (vi,vj)依附于顶点 v i v_i vi,和顶点 v j v_j vj

在这里插入图片描述

v 0 v_0 v0的邻接点: v 1 v_1 v1, v 3 v_3 v3
v 1 v_1 v1的邻接点: v 0 v_0 v0, v 2 v_2 v2, v 4 v_4 v4

有向图

无向图中,对于任意两个顶点 v i v_i vi,和顶点 v j v_j vj,若存在弧 < v i , v j > <v_i,v_j> <vi,vj>,则称顶点 v i v_i vi,和顶点 v j v_j vj,互为邻接点,同时称弧 < v i , v j > <v_i,v_j> <vi,vj>依附于顶点 v i v_i vi,和顶点 v j v_j vj

在这里插入图片描述

 

不同逻辑结构关系的对比

在这里插入图片描述

在线性结构中,数据元素之间仅具有线性关系;
在树结构中,结点之间具有层次关系;
在图结构中,任意两个顶点之间都可能有关系。

在这里插入图片描述

在线性结构中,元素之间的关系为前驱和后继
在树结构中,结点之间的关系为双亲和孩子
在图结构中,顶点之间的关系为邻接。
 

图的基本术语

无向完全图:在无向图中,如果任意两个顶点之间都存在边,则称该图为无向完全图。
有向完全图:在有向图中,如果任意两个顶点之间都存在方向相反的两条弧,则称该图为有向完全图

在这里插入图片描述

含有n个顶点的无向完全图有 n × ( n − 1 ) / 2 n\times(n-1)/2 n×n1/2条边。
含有n个顶点的有向完全图有 n × ( n − 1 ) n\times (n-1) n×n1条弧。

 

稀疏图:称边数很少的图为稀疏图;稠密图:称边数很多的图为稠密图。
顶点的度:在无向图中,顶点v的度是指依附于该顶点的边数,通常记为 T D ( v ) TD(v) TDv
顶点的入度:在有向图中,顶点v的入度是指以该顶点为弧头的弧的数目,记为 I D ( v ) ID(v) IDv;顶点的出度:在有向图中,顶点v的出度是指以该顶点为弧尾的弧的数目,记为 O D ( v ) OD(v) ODv

 

在具有n个顶点、e条边的无向图中,各顶点的度之和与边数之和有如下关系
∑ i = 1 n T D ( ν i ) = 2 e \sum\limits_{i=1}^{n}T D\left(\nu_{i}\right)=2e i=1nTD(νi)=2e
在具有n个顶点、e条边的有向图中,各顶点的入度之和与各顶点的出度之和有如下关系
∑ i = 1 n I D ( v i ) = ∑ i = 1 n O D ( v i ) = e \sum\limits_{i=1}^{n}ID\left(v_i\right)=\sum\limits_{i=1}^{n}OD\left(v_i\right)=e i=1nID(vi)=i=1nOD(vi)=e
 

权:是指对边赋予的有意义的数值量。(一个节点到另一个结点需要的代价)
网:边上带权的图,也称网图

在这里插入图片描述

路的长度

非带权图 ————> 路径上边的个数
带权图 ————> 路径上各边的权之和

回路,简单路径,简单回路

回路(环):第一个顶点和最后一个顶点相同的路径。
简单路径:序列中顶点不重复出现的路径。
简单回路(简单环):除了第一个顶点和最后一个顶点外,其余顶点不重复出现的回路。

在这里插入图片描述

 

连通图,连通分量

连通图:在无向图中,如果从一个顶点 v i v_i vi,到另一个顶点 v j ( i ≠ j ) v_j(i\ne j) vj(i=j)有路径,则称顶点 v i v_i vi,和 v j v_j vj,是连通的。如果图中任意两个顶点都是连通的,则称该图是连通图。
连通分量:非连通图的极大连通子图称为连通分量。

​ 1.含有极大顶点数;
​ 2.依附于这些顶点的所有边

在这里插入图片描述

强连通图:在有向图中,对图中任意一对顶点 v i v_i vi v j ( i ≠ j ) v_j(i\ne j) vj(i=j),若从顶点 v i v_i vi,到顶点 v j v_j vj,和从顶点 v j v_j vj,到顶点 v i v_i vi,均有路径则称该有向图是强连通图。
强连通分量:非强连通图的极大强连通子图。

在这里插入图片描述

 

生成树

生成树:n个顶点的连通图G的生成树是包含G中全部顶点的一个 极小连通子图 极小连通子图 极小连通子图

含有n-1条边,多一条构成回路,少一条不连通

在这里插入图片描述

生成森林:在非连通图中,由每个连通分量都可以得到一棵生成树,这些连通分量的生成树就组成了一个非连通图的生成森林。

在这里插入图片描述

 

图的储存

图的粗存结构及实现
邻接矩阵

基本思想:用一个一维数组存储图中顶点的信息,用一个二维数组(称为邻接矩阵)存储图中各顶点之间的邻接关系。

无向图的邻接矩阵

在这里插入图片描述

特点:

主对角线为0且一定是对称矩阵。

如何求邻接矩阵中的度

通过扫描该点邻接矩阵中的行

该点边表中结点的个数

 

有向图的临界矩阵

可能不是对称的

 

网图邻接矩阵的定义

arc [ i ] [ j ] = { w i j ,若 ( v i , v j ) ∈ E ( 或 < v i , v j > ∈ E ) 0 , 若 i = j ∞ ,其他 \textbf{arc}[i][j]=\left\{\begin{array}{l}\boldsymbol{w}_{ij},若(v_i,v_j)\in E(或<v_i,v_j>\in E) \\ \boldsymbol{0},若i=j \\{\infty},其他\end{array}\right. arc[i][j]= wij,若(vi,vj)E(<vi,vj>∈E)0,i=j,其他

在这里插入图片描述

图的储存结构及实现
const int MAX_VERTEX=10;//图的最大顶点数
class MGraph{
	private:
		Data Type vertex[MAX_VERTEX];  
		int arc[MAX_VERTEX][MAX_VERTEX];
		int vertexNum, arcNum;
	public:
		MGraph(DataType v[],int n,int e);//构造函数
		-MGraph();           //析构函数
		void DFSTraverse(int v); //深度遍历
		void BFSTrayerse(int v);  //广度遍历
};

 

构造函数的实现

邻接矩阵中图的基本操作——构造函数
1.确定图的顶点个数和边的个数;
2.输入顶点信息存储在一维数组vertex中;
3.初始化邻接矩阵arc;
4.依次输入每条边存储在邻接矩阵arc中;
4.1输入边依附的两个顶点的序号i,j;
4.2将邻接矩阵的第i行第j列的元素值置为1;
4.3将邻接矩阵的第j行第i列的元素值置为1;

MGraph::MGraph(Data Type v[], int n,int e){
	vertexNum = n;
	arcNum = e;
	for (i = 0; i < vertexNum; i++)
		vertex[i] = v[i];
	for (i = 0; i < vertexNum; i++)
	//初始化邻接矩阵
		for (j = 0; j < vertexNum; j++)
			arc[i][] = 0;
	for (i = 0; i< arcNum; i++)[ //依次输入每一条边
		cin >>vi>>vj; //输入边依附的两个顶点的编号
		arc[vi][vj] = 1; //置有边标志
		arc[vj][vi] = 1;
     }
   }

邻接表

图的邻接矩阵储存结构的空间复杂度?

假设图G有n个顶点e条边,则储存该图需要 O ( n 2 ) O(n^2) O(n2)

 

如果为稀疏图则会出现什么现象?

邻接表储存的基本思想:对于图的每个顶点 v i v_i vi,将所有邻接于 v i v_i vi的顶点链成一个单链表,称为顶点 v i v_i vi的边表(对于有向图则称为出边表)所有边表的头指针和存储顶点信息的一维数组构成了顶点表。

 

在这里插入图片描述

vertex数据域,存放顶点信息
firstEdge指针域,指向边表中第一个结点
adjvex邻接点域,边的终点在顶点表中的下标
next指针域,指向边表中的下一个结点
struct ArcNode//边表
{
	int adjvex;
	ArcNode *next;
};
struct VertexNode //顶点表
{
	DataType vertex;
	ArcNode *fristEdge;
};
图的存储结构及实现
邻接表存储有向图的类
const int MAx_VERTEX = 10;
class ALGraph{
	private:
		VertexNode adjList[MAX_VERTEX];
		int vertexNum,arcNum;
	public:
		ALGraph(DataType v[],int n,int e);//构造函数
		~ALGraph();                      //析构函数
		void DFSTraverse(int v);
		void BFSTraverse(int v);
}
邻接表中图的基本操作----构造函数

1.确定图的顶点个数和边的个数

2.输入顶点信息,初始化该顶点的边表

3.依次输入边的信息并储存在边表中

​ 3.1输入边所依附的两个顶点的序号 v i v_i vi v j v_j vj

​ 3.2生成邻接点序号为 v j v_j vj的边表结点s

​ 3.3将结点s插入到第 v i v_i vi个边表的头部

 

ALGraph:: ALGraph(DataType v[], int n, int e){
	vertexNum = n;
	arcNum = e;
	for (i = 0; i < vertexNum; i++) {
	//初始化顶点信息,指针域都为空
		adjList[i].vertex = v[i];
		adjList[i].firstEdge = NULL;
	}
    for(i = 0;i < arcNum ;i++){
        //输入边的信息存储在边表中
        cin>>vi>>vj;//输入边依附的两个顶点的编号
        s = newArcNode;
        s->adjvex = vj;
        s->next = adjList[vi].fristEdge;
        adjList[vi].fristEdge = s;
    }
}

 

十字链表

将邻接表和逆邻接表合二为一,方便计算每个结点的入读和出度。

要频繁计算数据的入度和出度,用十字链表。

空间性能时间性能适用范围唯一
邻接矩阵 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)稠密图唯一
邻接表 O ( n + e ) O(n+e) O(n+e) O ( n + e ) O(n+e) O(n+e)稀疏图不唯一

 

图的遍历

1.在图中,任何两个顶点之间都可能存在边,顶点是没有确定的先后次序的,所以,顶点的编号不唯一。
为了定义操作的方便,将图中的顶点按任意顺序排列起来,比如,按顶点的存储顺序。

2.从某个起点始可能到达不了所有其它顶点,怎么办?

解决方案:多次调用从某顶点出发遍历图的算法。

3.因图中可能存在回路,某些顶点可能会被重复访问,那么如何避免遍历不会因回路而陷入死循环。

解决方案:附设访问标志数组visited[n]

4.在图中,一个顶点可以和其它多个顶点相连,当这样的顶点访问过后,如何选取下一个要访问的顶点?

深度和广度优先遍历

深度优先遍历

(1)访问顶点v;
(2)从v的未被访问的邻接点中选取一个顶点w,从w出发进行深度优先遍历;
(3)重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。

伪代码

1.访问顶点v;visited[v]= 1;
2.w=顶点v的第一个邻接点;
3.while(w存在)
3.1 if(w未被访问)从顶点w出发递归执行该算法;
3.2 w=顶点v的下一个邻接点;

邻接表实现
void ALGraph::DFSTraverse(int * visited) {
	
	int i;
	for (i = 0; i < vertexNum; i++) {
		visited[i] = 0;
	}
	for (i = 0; i < vertexNum; i++) {  //循环遍历每个顶点
		if (!visited[i]) {
			DFS(i, visited);
		}
	}
}

void ALGraph::DFS(int v, int *visited) {   //遍历单个头顶点

	visited[v] = 1;
	cout << adjList[v].vertex << " ";
	ArcNode *p = adjList[v].firstEdge;
	while (p) {
		if (!visited[p->adjvex]) {
			DFS(p->adjvex, visited);
		}
		p = p->next;
	}

}
邻接矩阵实现
template<class T>
void MGraph<T>::DFS(int i,int * visited){
	cout<<vertex[i]<<" ";
	visited[i] = 1;
	for(int j=0;j<vertexNum;j++){
		if(visited[j] == 0&&arc[i][j] != 0 &&arc[i][j] != INFINIT){
			DFS(j,visited);
		}
	}
}

template<class T>
void MGraph<T>::DFSTraverse(int * visited){
	for(int i=0;i<vertexNum;i++){
		visited[i] = 0;
	}
	for(int i=0;i<vertexNum;i++){
		if(!visited[i]){
			DFS(i,visited);
		}
	}
}

广度优先遍历

基本思想:
(1)访问顶点v;
(2)依次访问v的各个未被访问的邻接点v1,V2,…,Vk
(3)分别从v1,V2,…, Vk出发依次访问它们未被访问的邻接点,并使“先被访问顶点的邻接点”先于后被访问顶点的邻接点”被访问。直至图中所有与顶点v有路径相通的顶点都被访问到。

邻接表实现
void ALGraph::BFSTraverse(int * visited) {
	
	int i;
	for (i = 0; i < vertexNum; i++) {
		visited[i] = 0;
	}
	for (i = 0; i < vertexNum; i++) {
		if (!visited[i]) {
			BFS(i, visited);
		}
	}
}

void ALGraph::BFS(int i, int *visited) {
	queue<int> q;
	visited[i] = 1;
	q.push(i);
	
	while(!q.empty()){
		int temp = q.front();
		cout<<adjList[temp].vertex<<" ";
		q.pop();
		ArcNode * p = adjList[i].firstEdge;
		while(p){
			if(!visited[p->adjvex]){
				q.push(p->adjvex);
				visited[p->adjvex] = 1;
			}
			p = p->next;
		}
	}
	
}
邻接矩阵实现
template<class T>
void MGraph<T>::BFS(int i,int * visited){
	queue<int> q;
	visited[i] = 1;
	q.push(i);
	while(!q.empty()){
		int temp = q.front();
		cout<<vertex[temp]<<" ";
		q.pop();
		for(int j=0;j<vertexNum;j++){
			if(!vertex[i]&&arc[i][j]!=0&&arc[i][j]!=INFINIT){
				
				visited[j] = 1;
				q.push(j);
			}
		}

	}
	cout<<endl;
}
template<class T>
void MGraph<T>::BFSTraverse(int * visited){
	for(int i=0;i<vertexNum;i++){
		visited[i] = 0;
	}
	for(int i=0;i<vertexNum;i++){
		if(!visited[i]){
			BFS(i,visited);
		}
	}
}

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

y江江江江

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值