极坐标系和参数方程
参数方程
基本思想
一般的,参数方程都有如下形式:
x
=
g
(
t
)
,
y
=
h
(
t
)
x=g(t),y=h(t)
x=g(t),y=h(t)
这里的g和h是已经给定的函数,其中t就是参数,一般地会在特定的区间,比如(a
≤
\le
≤t
≤
\le
≤b)中变化,这些方程描绘的参数曲线由平面上满足
(
x
,
y
)
=
(
g
(
t
)
,
h
(
t
)
)
,
a
≤
t
≤
b
(x,y)=(g(t),h(t)),a\le t \le b
(x,y)=(g(t),h(t)),a≤t≤b
参数抛物线
有如下形式
x
=
g
(
t
)
=
2
t
,
y
=
h
(
t
)
=
1
2
t
2
−
4
,
0
≤
t
≤
8
x=g(t)=2t,y=h(t)=\frac{1}{2}t^2-4,0\le t \le 8
x=g(t)=2t,y=h(t)=21t2−4,0≤t≤8
参数圆
例如
x
=
4
c
o
s
2
π
t
,
y
=
4
s
i
n
2
π
t
,
0
≤
t
≤
1
x = 4cos2\pi t,y = 4sin2 \pi t,0 \le t \le 1
x=4cos2πt,y=4sin2πt,0≤t≤1
参数直线
把方程 x = x 0 + a t x = x_0 +at x=x0+at, y = y 0 + b t y = y_0 +bt y=y0+bt 描绘成y = f(x)的形式
曲线的参数方程
也是我们需要掌握的内容就是把坐标方程或者图像的曲线参数化。
前定向&正定向
随着参数增加生成参数曲线的方向称为曲线的前定向或者正定向。
参数曲线的导数
设x=g(t),y=h(t),这里的g和h在区间[a,b]上可导,则当
d
y
d
x
≠
0
\frac{dy}{dx} \ne 0{}
dxdy=0时,
d
y
d
x
=
d
y
/
d
t
d
x
/
d
t
=
h
′
(
t
)
g
′
(
t
)
\frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{h'(t)}{g'(t)}
dxdy=dx/dtdy/dt=g′(t)h′(t)
如此,假设一个参数方程的参数为t,那我们就可以通过上公式求出此参数方程在t处的导数。
极坐标
在极坐标系中,原点称为极点,x-称为极轴,例如下图点p的极坐标形式为(r, θ \theta θ ),径向坐标r表示从原点到p点的距离,角坐标 θ \theta θ表示始边为正x-轴,终点为过原地和p的射线之间的夹角。
直角坐标与极坐标的转换
有如下规则
若极坐标为(r,
θ
\theta
θ)则其直角坐标为(x,y),其中
x
=
r
c
o
s
θ
和
y
=
r
s
i
n
θ
x = r cos\theta 和 y = r sin \theta
x=rcosθ和y=rsinθ
若直角坐标为(x,y),则其极坐标为(r,
θ
\theta
θ),其中
r
2
=
x
2
+
y
2
和
t
a
n
θ
=
y
x
r^2 = x^2 +y^2 和 tan\theta=\frac{y}{x}
r2=x2+y2和tanθ=xy
通过如上公式,可以将直角坐标和极坐标进行相互转换。
极坐标方程的对称性
1.关于x-轴对称,如果点(r, θ \theta θ)在图像上,则点(r,- θ \theta θ)也在图像上。
2.关于y-轴对称,如果点(r, θ \theta θ)在图像上,则点(r, π − θ \pi - \theta π−θ)=(-r,- θ \theta θ)也在图像上。
3关于原点对称,如果说点(r, θ \theta θ)在图像上,则点(-r, θ \theta θ)=(r, θ \theta θ+ π \pi π)也在图像上
极坐标微积分
切线的斜率
在极坐标中,我们可以把极坐标r=f( θ \theta θ),写成以 θ \theta θ的参数形式:
其导数是
y
x
=
f
′
(
θ
)
s
i
n
θ
+
f
(
θ
)
c
o
s
θ
f
′
(
θ
)
c
o
s
θ
−
f
(
θ
)
s
i
n
θ
=
y
′
(
θ
)
x
′
(
θ
)
\frac{y}{x}=\frac{f'(\theta)sin\theta+f(\theta)cos\theta}{f'(\theta)cos\theta-f(\theta)sin\theta}=\frac{y'(\theta)}{x'(\theta)}
xy=f′(θ)cosθ−f(θ)sinθf′(θ)sinθ+f(θ)cosθ=x′(θ)y′(θ)
极坐标所围区域的面积
设R是由两条曲线
r
=
f
(
θ
)
r=f(\theta)
r=f(θ)和
r
=
g
(
θ
)
r=g(\theta)
r=g(θ)在
θ
\theta
θ=
α
\alpha
α和
θ
\theta
θ=
β
\beta
β之间所围成的区域。其中f和g在[
α
\alpha
α,
β
\beta
β]上是连续的,并且
f
(
θ
)
≥
g
(
θ
)
≥
0
f(\theta)\ge g(\theta) \ge 0
f(θ)≥g(θ)≥0,则R的面积为
∫
α
β
1
2
(
f
(
θ
)
2
−
g
(
θ
)
2
)
d
θ
\int_{\alpha}^{\beta}\frac{1}{2}(f(\theta)^2-g(\theta)^2)d\theta
∫αβ21(f(θ)2−g(θ)2)dθ
通常地我们求一个极坐标图形围成的面积,可以从其对称性入手,例如四叶玫瑰,
r
=
f
(
θ
)
=
2
c
o
s
2
θ
(
0
≤
θ
≤
2
π
)
r=f(\theta)=2cos2\theta(0\le \theta \le 2\pi)
r=f(θ)=2cos2θ(0≤θ≤2π)
1.我们首先观察它的对称性
其既关于x-对称也关于y-对称
2.我们可以按一部分进行运算
我们可以先计算半片叶子的面积然后乘八从而计算出它的总面积。
圆锥曲线
抛物线
抛物线是平面上到一定点(焦点)与到一定直线(称为准线)等距的点的集合。
四种标准抛物线方程
设p为实数,以(0,p)为焦点,y=-p为准线的抛物线关于y-轴对称且其为 x 2 = 4 p y x^2=4py x2=4py。如果p>0.则抛物线开口向上;如果p<0,则抛物线开口向下。
以(p,0)为焦点,x=-p为准线关于x-轴对称且其方程为 y 2 = 4 p y y^2=4py y2=4py,如果p>0,则抛物线开口朝右。如果p<0则抛物线开口向左。
经常地,我们会收到一个顶点和开口的方向,还有一个其所经过的点的抛物线方程。
椭圆
椭圆上有两个焦点,其中椭圆上所有的与两焦点的距离和都相等。
标准椭圆方程
中心在原点,焦点在(
±
c
\pm c
±c,0)处,顶点在(
±
a
\pm a
±a,0)处的椭圆方程是
x
2
a
2
+
y
2
b
2
=
1
,
其中
a
2
=
b
2
+
c
2
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,其中a^2=b^2+c^2
a2x2+b2y2=1,其中a2=b2+c2
中心在原点,焦点在(0,
±
c
\pm c
±c)处,顶点在(0,
±
a
\pm a
±a)处的椭圆方程是
y
2
a
2
+
x
2
b
2
=
1
,其中
a
2
=
b
2
+
c
2
\frac{y^2}{a^2}+\frac{x^2}{b^2}=1,其中a^2=b^2+c^2
a2y2+b2x2=1,其中a2=b2+c2
两种情况下都有a>b>0和a>c>0,长轴为2a,短轴为2b。
双曲线
标准双曲线方程
中心在原点,焦点在(
±
x
\pm x
±x,0)处,顶点在(
±
a
\pm a
±a,0)处的双曲线方程是
x
2
a
2
+
y
2
b
2
=
1
,
其中
b
2
=
c
2
−
a
2
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,其中b^2=c^2-a^2
a2x2+b2y2=1,其中b2=c2−a2
该双曲线的渐近线是
y
=
±
b
x
/
a
y=\pm bx/a
y=±bx/a
中心在原点,焦点在(0,
±
c
\pm c
±c)处,顶点在(0,
±
a
\pm a
±a)处的双曲线方程是
y
2
a
2
−
x
2
b
2
=
1
,
其中
b
2
=
c
2
+
a
2
\frac{y^2}{a^2}-\frac{x^2}{b^2}=1,其中b^2=c^2+a^2
a2y2−b2x2=1,其中b2=c2+a2
该双曲线的渐近线是
y
=
±
a
x
/
b
y=\pm ax/b
y=±ax/b
两种情况都有c>a>0和c>b>0.
x
2
a
2
+
y
2
b
2
=
1
,
其中
b
2
=
c
2
−
a
2
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,其中b^2=c^2-a^2
a2x2+b2y2=1,其中b2=c2−a2
该双曲线的渐近线是
y
=
±
b
x
/
a
y=\pm bx/a
y=±bx/a
中心在原点,焦点在(0,
±
c
\pm c
±c)处,顶点在(0,
±
a
\pm a
±a)处的双曲线方程是
y
2
a
2
−
x
2
b
2
=
1
,
其中
b
2
=
c
2
+
a
2
\frac{y^2}{a^2}-\frac{x^2}{b^2}=1,其中b^2=c^2+a^2
a2y2−b2x2=1,其中b2=c2+a2
该双曲线的渐近线是
y
=
±
a
x
/
b
y=\pm ax/b
y=±ax/b
两种情况都有c>a>0和c>b>0.