2D和3D空间的镜像变换

2D

对于2D空间的某个条直线做镜像,假设该直线的 单位法向量 u(x,y),由 Q = I − 2 u u T Q=I-2 u u^{T} Q=I2uuT 计算得到2D空间的镜像矩阵

[ 1 − 2 n x 2 − 2 n x n y − 2 n x n y 1 − 2 n y 2 ] \left[ \begin{array}{cc} 1-2 n_{x}{ }^{2} & -2 n_{x} n_{y} \\ -2 n_{x} n_{y} & 1-2 n_{y}{ }^{2} \end{array} \right] [12nx22nxny2nxny12ny2]

3D

针对3D空间任意一平面进行镜像变换,n为镜像平面的法向量

[ 1 − 2 n x 2 − 2 n x n y − 2 n x n z − 2 n x n y 1 − 2 n y 2 − 2 n y n z − 2 n x n z − 2 n y n z 1 − 2 n z 2 ] \left[ \begin{array}{ccc} 1-2 n_{x}{ }^{2} & -2 n_{x} n_{y} & -2 n_{x} n_{z} \\ -2 n_{x} n_{y} & 1-2 n_{y}{ }^{2} & -2 n_{y} n_{z} \\ -2 n_{x} n_{z} & -2 n_{y} n_{z} & 1-2 n_{z}{ }^{2} \end{array} \right] 12nx22nxny2nxnz2nxny12ny22nynz2nxnz2nynz12nz2

例如,[10 20 30] 以z轴(0,0,1)为镜子(xy平面为镜像平面)进行镜像变换得到[10 20 -30]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晨光ABC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值