multi-source 领域泛化总结

本文总结了多源领域的泛化学习方法,包括Boosting for transfer learning with multiple sources中通过最小化MMD距离和交叉熵实现源到目标的映射,以及Improving Domain-Adapted Sentiment Classification中利用深度对抗互学习让单源和目标数据相互指导,还有Moment Matching for Multi-Source Domain Adaptation中采用特征匹配和欧氏距离正则化的策略。这些方法在处理不同源数据时有不同的优缺点。
摘要由CSDN通过智能技术生成

1、 Boosting for transfer learning with multiple sources

1、 MUDA  AAAI 19 的multi-source 论文

论文大概分为两步(适合心情好的时候跑着玩一玩):

第一步  每个source到target的Maximum Mean Discrepancy (MMD)距离尽量小,同时source自己的分类的交叉熵尽量小。这样过每个source 映射到target, 然后同时每个source 有自己的特征提取器和分类器。

第二步 它认为不同的分类器应该对target的分类应该是一样的结果,所以有了第三个loss,不同分类结果的loss.

挺好理解的。这个方法同样也存在问题,如果source 数据很多怎么办,是不是要对每个source 数据产生的结果都进行优化,每个source数据都映射到target 数据。

2、Improving Domain-Adapted Sentiment Classification by Deep Adversarial Mutual Learning,AAAI2020

这篇论文适合只有一个source 和 target的数据,它希望两个初始化不一样的模型可以相互指导学习。

3、Moment Matching for Multi-Source Domain Adaptation,ICCV2019

这篇论文写得有点让人迷糊,我就只能看了代码。

第一步 每个source使用同样的 feafure extrator, 相同的 classifier, 这样每个source x 和 source y 用交叉熵可以解决这样问题。

第二部  它希望每个source 的特征可以和target的 domain 可以匹配,如何匹配呢,这里有一个迷惑行为,每个不同组的输出之间欧几里得距离要近,真的不懂这样的正则方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值