关于两个向量组的线性无关与表出问题

数学 同时被 2 个专栏收录
139 篇文章 20 订阅
31 篇文章 7 订阅

n维列向量组 α1,α2,...,αm,m<n 线性无关,则n维列向量组 β1,β2,...,βm 线性无关的充要条件是(D)
A. 向量组 α1,α2,...,αm 可由向量组 β1,β2,...,βm 线性表出
B. 向量组 β1,β2,...,βm 可由 α1,α2,...,αm 线性表出
C. 向量组 α1,α2,...,αm β1,β2,...,βm 等价
D. 矩阵 [α1,α2,...,αm] 矩阵 [β1,β2,...,βm] 等价

分析:主要想思考一种向量空间与子空间的概念。
线性代数应当是非常形象的,如果引入了子空间的概念的话。比如这里,n维的向量张开的是n维空间,那么从中取出m个,且 m<n ,即使是m个线性无关向量,得到的是在n维下开辟的子空间,是n维空间的一个子集。

因此,A项中,即使 β1,β2,...,βm 线性无关,与 α1,α2,...,αm 线性无关,得到的子空间不必是同一个。那么在不同子空间下,两个向量组任何一方都不能线性表出对方。而当 α1,α2,...,αm 能够被 β1,β2,...,βm 线性表出时,可以得到的是 β1,β2,...,βm 一定是线性无关,且它们张开的是同一个子空间。这里需要的是充要条件,因此A项不行。

对于B项,m个线性无关向量组可以表达的是在自己的子空间内的向量,可以是子空间的子空间。因此 β1,β2,...,βm 只会比 α1,α2,...,αm 更小,也即不可能是线性无关。

C项是一个充分条件,限定了两个向量组等价(可以互相线性表出),也就意味着二者是同一个子空间。当然可以得到两个向量组线性无关,但是反过来无法推导。

D项是合理的,矩阵的等价表示二者可以初等行变换得到。即二者形成的矩阵秩相等。因此可以互相推导。即充要条件。

update:关于子空间的理解,有待深化理解。马克之。

  • 5
    点赞
  • 0
    评论
  • 3
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值