x^(1/x)相关问题极限求解思路

本文介绍了如何解决x^(1/x)相关问题的极限求解思路,通过一个2010年数三的例题展示分析过程。利用e的性质,将原问题转化为00型极限,简化问题并采用整体观进行求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

x^(1/x)相关问题极限求解思路

看一道问题。

(2010,数三) limx+(x1x1)1lnx

分析:这种类型的问题,如果不掌握对待 x1x 的求解导数的方法就会陷入很大的麻烦。此外在极限求解中,如果可以化到代入为常数且关系式是相乘且不为0,那么就可以直接代入。这比用泰勒展开还要快,因为用泰勒确实直接,但是展开式将极其复杂。

这里,首先用大家e起来判断是什么形式。

limx+x1x=limx+elnxx=e0=1

因此,原问题实际上是 00 型。

那么,原问题化为:

limx+(x1x1)1lnx=limx+e1lnxln(x1x1)

不要带着整个形式去求解,而是轻装简从:求解幂指数,像火箭发射一样,适当脱离前面的燃料壳才能继续往上。

即:

limx+1lnxln(x1x1)=limx+ln(x1x1)lnx

此时是无穷大比无穷大型。如果直接洛必达,将会发现求导形式根本hold不住。因此:

e起来。

limx+ln(x1x1)lnx=limx+ln(elnxx1)lnx=limx+x(e)e1,=lnxx

用整体观代替可以减少复杂性。这样,我们再次只需要关注框的求导即可。

(e)=elnxx1lnxx2

回代,得到:

limx+ln(x1x1)lnx=limx+ln(elnxx1)lnx=limx+1lnxx(elnxx1)=limx+1lnxlnx,elnxx1lnxx=1

很难相信这是数学三的题目。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值