两个很重要的极限和夹逼准则

本文详细介绍了两个重要的极限概念及其证明过程:一是sinx/x在x趋向于0时的极限为1;二是(1+1/x)^x在x趋向于正无穷时的极限为e。此外还阐述了夹逼准则的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

两个重要的极限
第一个:
lim(sinx/x),在x趋向于0的时候,其值为1。

第二个:
lim(1+1/x)^x,在x趋向于正无穷的时候,其值为e。
在这里插入图片描述

夹逼准则
如果函数a(x),b(x),c(x)
满足:
a(x)<=b(x)<=c(x)


x趋向于x0
或者x趋向于无穷大

此时a(x)和c(x)都有极限,并且极限都是A,那么又因为:a(x)<=b(x)<=c(x)
此时推导出b(x)在

x趋向于x0
或者x趋向于无穷大
时的极限也是A。

下面来证明第一个重要的极限:
lim(sinx/x)在x趋向于0的时候,极限值为1。

如图所示:
在这里插入图片描述
上图为四分之一圆,圆的半径为1。
如果角AOB为x,单位为弧度。
sinx=CB
x=弧AB,这里要知道弧长计算公式了,等于半径*扇形的弧度,
tanx=AD/OA=AD,这里的OA=半径=1
由图可以可得:
sinx<=x<=tanx
x<=tanx见下图,而弧AB>AB>sinx是由图显而易见的。
在这里插入图片描述

不等式两边同时除以sinx得到:
1<=x/sinx<=tanx/sinx
也就是:
1<=x/sinx<=1/cosx
这个距离我们的sinx/x的极限还是有一定距离:
我们将等式全部倒数得到:
cosx<=sinx/x<=1

如果我们能够推导出cosx的极限在x趋向于0的时候,是1,那么根据夹逼准则可以推导出:sinx/x,在x趋向于0的时候的极限也是1。

ok,问题转化成了,求cosx的在x->0的极限。

在0到pi/2区间内:
0<=|cosx-1|=1-cosx=2[sin(x/2)]^2

根据上面的图形知道,x在0到pi/2区间,sinx<=x<=tanx
而x/2,则进一步的缩小了区间,此时在0到pi/4区间了,则有sin(x/2)<=x/2<=tan(x/2)
此时:
0<=|cosx-1|=1-cosx=2[sin(x/2)]^2 <=2*(x/2)(x/2)=xx/2
当x趋向0的时候,x*x/2的极限为0
所以从而得到:cosx在x趋向0的时候,极限为1。

cosx<=sinx/x<=1
所以,得到sinx/x在x趋向0的时候,极限为1。

准则二:
单调有界数列必有极限。
证明略。在高等数学,同济大学版中,证明略,只给出了几何解释。

第二个重要的极限
lim(1+1/x)^x,在x趋向于正无穷的时候,其值为e。

证明,分为两步。
如果考虑正整数的情况。

Xn = (1+1/n)^n
1)根据牛顿的二项展开式,我们分别展开Xn和Xn+1的情况,可以得到Xn+1是大于Xn的。说明是单调递增的。
2)然后证明其是有界的
比如将Xn=(1+1/n)^n展开:
在这里插入图片描述
由于1-1/n是小于1的,而(1-1/n)(1-2/n)<1*1
以此类推:
在这里插入图片描述
就小于
在这里插入图片描述

此时说明,数量Xn是有界的,ok,也就说明lim(1+1/x)^x,在x趋向于正无穷的时候,是有极限的,通常用字母e表示。

参考资源链接:[考研数学精要:高数、线代、概率论核心知识点总结](https://wenku.csdn.net/doc/1r9kd3sru0?utm_source=wenku_answer2doc_content) 在考研数学中,理解无穷小、极限以及定理是解决相关问题的基础。这里将结合实际内容相关资源《考研数学精要:高数、线代、概率论核心知识点总结》为你详细解析这些概念。 无穷小是微积分中的一个基础概念,它描述了当变量趋近于某一点时函数值的变化趋势。理解无穷小的重要性在于,它能帮助我们分析函数在特定点的行为,比如函数在该点的连续性可导性。例如,当x趋近于0时,x与sin(x)是等价无穷小,这个关系在求极限时非常有用。 极限是微积分的核心概念之一,它描述了函数或数列趋向于某一值的趋势。掌握求极限的方法对于解决复杂函数问题至关重要。常用的方法包括利用极限的基本性质、四则运算法则、洛必达法则、泰勒展开等。而两个重要的求极限准则——单调有界数列极限存在定理定理,则是理解求解极限问题的钥匙。 定理是求极限的一种实用工具,当直接求极限比较困难时,如果能找到两个极限相同且函数在它们之间的函数,那么原函数的极限就可以确定为这两个相同极限的值。定理常常用于求解一些不便于直接计算的极限问题,例如在无穷级数积分的极限过程中。 为了进一步掌握这些概念,建议深入阅读《考研数学精要:高数、线代、概率论核心知识点总结》。这本书详细总结了这些核心概念及其应用,并提供了丰富的例题解析,能够帮助你更深刻地理解这些概念,并在实际问题中灵活运用。 在充分理解了无穷小、极限定理的概念后,你将能够更好地解决考研数学中的相关问题。这本书不仅覆盖了你当前关心的概念,还包含了线性代数概率论的重点知识,使你能够全面地准备考研数学,提高解题能力。 参考资源链接:[考研数学精要:高数、线代、概率论核心知识点总结](https://wenku.csdn.net/doc/1r9kd3sru0?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值