目录
- A A A组
- B B B组
- C C C组
-
- 3.记 f ( x ) = 27 x 3 + 5 x 2 − 2 f(x)=27x^3+5x^2-2 f(x)=27x3+5x2−2的反函数为 f − 1 f^{-1} f−1,求极限: lim x → ∞ f − 1 ( 27 x ) − f − 1 ( x ) x 3 \lim\limits_{x\to\infty}\cfrac{f^{-1}(27x)-f^{-1}(x)}{\sqrt[3]{x}} x→∞lim3xf−1(27x)−f−1(x)。
- 4.计算下列极限。
-
- (2) lim x → 0 ∫ 0 x sin 2 t 4 + t 2 ∫ 0 x ( t + 1 − 1 ) d t ; \lim\limits_{x\to0}\displaystyle\int^x_0\cfrac{\sin2t}{\sqrt{4+t^2}\displaystyle\int^x_0(\sqrt{t+1}-1)\mathrm{d}t}; x→0lim∫0x4+t2∫0x(t+1−1)dtsin2t;
- (3) lim x → + ∞ ( x 3 + 2 x 2 + 1 3 − x e 1 x ) ; \lim\limits_{x\to+\infty}(\sqrt[3]{x^3+2x^2+1}-xe^{\frac{1}{x}}); x→+∞lim(3x3+2x2+1−xex1);
- (4) lim x → 0 1 + 1 2 x 2 − 1 + x 2 ( cos x − e x 2 2 ) sin s 2 2 ; \lim\limits_{x\to0}\cfrac{1+\cfrac{1}{2}x^2-\sqrt{1+x^2}}{(\cos x-e^{\frac{x^2}{2}})\sin\cfrac{s^2}{2}}; x→0lim(cosx−e2x2)sin2s21+21x2−1+x2;
- 7.设 a ⩾ 5 a\geqslant5 a⩾5且为常数,则 k k k为何值时极限 I = lim x → + ∞ [ ( x α + 8 x 4 + 2 ) k − x ] I=\lim\limits_{x\to+\infty}[(x^\alpha+8x^4+2)^k-x] I=x→+∞lim[(xα+8x4+2)k−x]存在,并求此极限值。
- 11.设 f ( x ) = lim n → ∞ 1 + ( 2 x ) n + x 2 n n ( x ⩾ 0 ) f(x)=\lim\limits_{n\to\infty}\sqrt[n]{1+(2x)^n+x^{2n}}(x\geqslant0) f(x)=n→∞limn1+(2x)n+x2n(x⩾0)。
- 写在最后
A A A组
15.求极限 lim x → 0 sin x + x 2 sin 1 x ( 2 + x 2 ) ln ( 1 + x ) \lim\limits_{x\to0}\cfrac{\sin x+x^2\sin\cfrac{1}{x}}{(2+x^2)\ln(1+x)} x→0lim(2+x2)ln(1+x)sinx+x2sinx1。
解
lim x → 0 sin x + x 2 sin 1 x ( 2 + x 2 ) ln ( 1 + x ) = lim x → 0 1 2 + x 2 ⋅ sin x + x 2 sin 1 x x = 1 2 lim x → 0 ( sin x x + x sin 1 x ) = 1 2 . \begin{aligned} \lim\limits_{x\to0}\cfrac{\sin x+x^2\sin\cfrac{1}{x}}{(2+x^2)\ln(1+x)}&=\lim\limits_{x\to0}\cfrac{1}{2+x^2}\cdot\cfrac{\sin x+x^2\sin\cfrac{1}{x}}{x}\\ &=\cfrac{1}{2}\lim\limits_{x\to0}\left(\cfrac{\sin x}{x}+x\sin\cfrac{1}{x}\right)=\cfrac{1}{2}. \end{aligned} x→0lim(2+x2)ln(1+x)sinx+x2sinx1=x→0lim2+x21⋅xsinx+x2sinx1=21x→0lim(xsinx+xsinx1)=21.
(这道题主要利用了洛必达法则适用条件求解)
B B B组
3.当 x → 0 + x\to0^+ x→0+时,下列无穷小量中,与 x x x同阶的无穷小是( )
( A ) 1 + x − 1 ; (A)\sqrt{1+x}-1; (A)1+x−1;
( B ) ln ( 1 + x ) − x ; (B)\ln(1+x)-x; (B)ln(1+x)−x;
( C ) cos ( sin x ) − 1 ; (C)\cos(\sin x)-1; (C)cos(sinx)−1;
( D ) x x − 1. (D)x^x-1. (D)xx−1.
解 选项 ( A ) (A) (A), 1 + x − 1 ∼ 1 2 x \sqrt{1+x}-1\sim\cfrac{1}{2}x 1+x−1∼21x,是关于 x x x的一阶无穷小。
选项 ( B ) (B) (B), ln ( 1 + x ) − x = [ x − 1 2 x 2 + ο ( x 2 ) ] − x ∼ − 1 2 x 2 \ln(1+x)-x=\left[x-\cfrac{1}{2}x^2+\omicron(x^2)\right]-x\sim-\cfrac{1}{2}x^2 ln(1+x)−x=[x−21x2+ο(x2)]−x∼−21x2,是关于 x x x的二阶无穷小。
选项 ( C ) (C) (C), cos ( sin x ) − 1 ∼ − 1 2 sin 2 x ∼ − 1 2 x 2 \cos(\sin x)-1\sim-\cfrac{1}{2}\sin^2x\sim-\cfrac{1}{2}x^2 cos(sinx)−1∼−21sin2x∼−21x2,是关于 x x x的二阶无穷小。
选项 ( D ) (D) (D), x x − 1 = e x ln x − 1 ∼ x ln x x^x-1=e^{x\ln x}-1\sim x\ln x xx−1=exlnx−1∼xlnx,不是关于 x x x的一阶无穷小。(这道题主要利用了无穷小求解)
15.计算下列极限。
(5) lim x → ∞ e − x ( 1 + 1 x ) x 2 ; \lim\limits_{x\to\infty}e^{-x}\left(1+\cfrac{1}{x}\right)^{x^2}; x→∞lime−x(1+x1)x2;
解
lim x → ∞ e − x ( 1 + 1 x ) x 2 = lim x → ∞ e x 2 ln ( 1 + 1 x ) − x = e lim x → ∞ ln ( 1 + 1 x ) − 1 x ( 1 x ) 2 = x = 1 t e lim t → 0 ln ( 1 + t ) − t t 2 = e lim t → 0 1 1 + t − 1 2 t = e − 1 2 . \begin{aligned} \lim\limits_{x\to\infty}e^{-x}\left(1+\cfrac{1}{x}\right)^{x^2}&=\lim\limits_{x\to\infty}e^{x^2\ln\left(1+\frac{1}{x}\right)-x}=e^{\lim\limits_{x\to\infty}\dfrac{\ln\left(1+\frac{1}{x}\right)-\frac{1}{x}}{\left(\frac{1}{x}\right)^2}}\\ &\xlongequal{x=\frac{1}{t}}e^{\lim\limits_{t\to0}\frac{\ln(1+t)-t}{t^2}}=e^{\lim\limits_{t\to0}\frac{\frac{1}{1+t}-1}{2t}}=e^{-\frac{1}{2}}. \end{aligned} x→∞lime−x(1+x1)x2=x→∞limex2ln(1+x1)−x=ex→∞lim(x1)2ln(1+x1)−x1x=t1et→0limt2ln(1+t)−t=et→0lim2t1+t1−1=e−21.
(这道题主要利用了变量代换求解)
(19) lim x → 0 + x x − ( tan x ) x x ( 1 + 3 sin 2 x − 1 ) . \lim\limits_{x\to0^+}\cfrac{x^x-(\tan x)^x}{x(\sqrt{1+3\sin^2x}-1)}. x→0+limx(1+3sin2x−1)xx−(tanx)x.
解 因为 lim x → 0 + x x = lim x → 0 + e x ln x = 1 , lim x → 0 + e x ln tan x = 1 \lim\limits_{x\to0^+}x^x=\lim\limits_{x\to0^+}e^{x\ln x}=1,\lim\limits_{x\to0^+}e^{x\ln\tan x}=1 x→0+limxx=x→0+limexlnx=1,x→0+limexlntanx=1。对分母作等价无穷小代换: 1 + 3 sin 2 x − 1 ∼ 1 2 ⋅ 3 sin 2 x ∼ 3 2 x 2 ( x → 0 + ) \sqrt{1+3\sin^2x}-1\sim\cfrac{1}{2}\cdot3\sin^2x\sim\cfrac{3}{2}x^2(x\to0^+) 1+3sin2x−1∼21⋅3sin2x∼23x