张宇1000题高等数学 第一章 函数极限与连续

目录

A A A

15.求极限 lim ⁡ x → 0 sin ⁡ x + x 2 sin ⁡ 1 x ( 2 + x 2 ) ln ⁡ ( 1 + x ) \lim\limits_{x\to0}\cfrac{\sin x+x^2\sin\cfrac{1}{x}}{(2+x^2)\ln(1+x)} x0lim(2+x2)ln(1+x)sinx+x2sinx1


lim ⁡ x → 0 sin ⁡ x + x 2 sin ⁡ 1 x ( 2 + x 2 ) ln ⁡ ( 1 + x ) = lim ⁡ x → 0 1 2 + x 2 ⋅ sin ⁡ x + x 2 sin ⁡ 1 x x = 1 2 lim ⁡ x → 0 ( sin ⁡ x x + x sin ⁡ 1 x ) = 1 2 . \begin{aligned} \lim\limits_{x\to0}\cfrac{\sin x+x^2\sin\cfrac{1}{x}}{(2+x^2)\ln(1+x)}&=\lim\limits_{x\to0}\cfrac{1}{2+x^2}\cdot\cfrac{\sin x+x^2\sin\cfrac{1}{x}}{x}\\ &=\cfrac{1}{2}\lim\limits_{x\to0}\left(\cfrac{\sin x}{x}+x\sin\cfrac{1}{x}\right)=\cfrac{1}{2}. \end{aligned} x0lim(2+x2)ln(1+x)sinx+x2sinx1=x0lim2+x21xsinx+x2sinx1=21x0lim(xsinx+xsinx1)=21.
这道题主要利用了洛必达法则适用条件求解

B B B

3.当 x → 0 + x\to0^+ x0+时,下列无穷小量中,与 x x x同阶的无穷小是(  )
( A ) 1 + x − 1 ; (A)\sqrt{1+x}-1; (A)1+x 1;
( B ) ln ⁡ ( 1 + x ) − x ; (B)\ln(1+x)-x; (B)ln(1+x)x;
( C ) cos ⁡ ( sin ⁡ x ) − 1 ; (C)\cos(\sin x)-1; (C)cos(sinx)1;
( D ) x x − 1. (D)x^x-1. (D)xx1.

  选项 ( A ) (A) (A) 1 + x − 1 ∼ 1 2 x \sqrt{1+x}-1\sim\cfrac{1}{2}x 1+x 121x,是关于 x x x的一阶无穷小。
  选项 ( B ) (B) (B) ln ⁡ ( 1 + x ) − x = [ x − 1 2 x 2 + ο ( x 2 ) ] − x ∼ − 1 2 x 2 \ln(1+x)-x=\left[x-\cfrac{1}{2}x^2+\omicron(x^2)\right]-x\sim-\cfrac{1}{2}x^2 ln(1+x)x=[x21x2+ο(x2)]x21x2,是关于 x x x的二阶无穷小。
  选项 ( C ) (C) (C) cos ⁡ ( sin ⁡ x ) − 1 ∼ − 1 2 sin ⁡ 2 x ∼ − 1 2 x 2 \cos(\sin x)-1\sim-\cfrac{1}{2}\sin^2x\sim-\cfrac{1}{2}x^2 cos(sinx)121sin2x21x2,是关于 x x x的二阶无穷小。
  选项 ( D ) (D) (D) x x − 1 = e x ln ⁡ x − 1 ∼ x ln ⁡ x x^x-1=e^{x\ln x}-1\sim x\ln x xx1=exlnx1xlnx,不是关于 x x x的一阶无穷小。(这道题主要利用了无穷小求解

15.计算下列极限。

(5) lim ⁡ x → ∞ e − x ( 1 + 1 x ) x 2 ; \lim\limits_{x\to\infty}e^{-x}\left(1+\cfrac{1}{x}\right)^{x^2}; xlimex(1+x1)x2;


lim ⁡ x → ∞ e − x ( 1 + 1 x ) x 2 = lim ⁡ x → ∞ e x 2 ln ⁡ ( 1 + 1 x ) − x = e lim ⁡ x → ∞ ln ⁡ ( 1 + 1 x ) − 1 x ( 1 x ) 2 = x = 1 t e lim ⁡ t → 0 ln ⁡ ( 1 + t ) − t t 2 = e lim ⁡ t → 0 1 1 + t − 1 2 t = e − 1 2 . \begin{aligned} \lim\limits_{x\to\infty}e^{-x}\left(1+\cfrac{1}{x}\right)^{x^2}&=\lim\limits_{x\to\infty}e^{x^2\ln\left(1+\frac{1}{x}\right)-x}=e^{\lim\limits_{x\to\infty}\dfrac{\ln\left(1+\frac{1}{x}\right)-\frac{1}{x}}{\left(\frac{1}{x}\right)^2}}\\ &\xlongequal{x=\frac{1}{t}}e^{\lim\limits_{t\to0}\frac{\ln(1+t)-t}{t^2}}=e^{\lim\limits_{t\to0}\frac{\frac{1}{1+t}-1}{2t}}=e^{-\frac{1}{2}}. \end{aligned} xlimex(1+x1)x2=xlimex2ln(1+x1)x=exlim(x1)2ln(1+x1)x1x=t1 et0limt2ln(1+t)t=et0lim2t1+t11=e21.
这道题主要利用了变量代换求解

(19) lim ⁡ x → 0 + x x − ( tan ⁡ x ) x x ( 1 + 3 sin ⁡ 2 x − 1 ) . \lim\limits_{x\to0^+}\cfrac{x^x-(\tan x)^x}{x(\sqrt{1+3\sin^2x}-1)}. x0+limx(1+3sin2x 1)xx(tanx)x.

  因为 lim ⁡ x → 0 + x x = lim ⁡ x → 0 + e x ln ⁡ x = 1 , lim ⁡ x → 0 + e x ln ⁡ tan ⁡ x = 1 \lim\limits_{x\to0^+}x^x=\lim\limits_{x\to0^+}e^{x\ln x}=1,\lim\limits_{x\to0^+}e^{x\ln\tan x}=1 x0+limxx=x0+limexlnx=1,x0+limexlntanx=1。对分母作等价无穷小代换: 1 + 3 sin ⁡ 2 x − 1 ∼ 1 2 ⋅ 3 sin ⁡ 2 x ∼ 3 2 x 2 ( x → 0 + ) \sqrt{1+3\sin^2x}-1\sim\cfrac{1}{2}\cdot3\sin^2x\sim\cfrac{3}{2}x^2(x\to0^+) 1+3sin2x 1213sin2x23x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值