泰勒展开与找第一项系数不为1的解题策略

在解决x趋近于0时,1-cosxcos2xcos3x与ax^n等价无穷小的问题中,泰勒展开是一种高效策略。通过分析低阶项吸收高阶项的原理,可以避免展开过多项。题目中n=2可立即得出,结合系数确定a=-7,从而得到解:a=-7, n=2。" 110726283,10295659,RabbitMQ实战:从基础到工作模式解析,"['消息队列', 'RabbitMQ', 'Java', 'AMQP', '分布式']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

泰勒展开与找第一项系数不为1的解题策略

@(微积分)

思考一道习题来看这个方法的运用。

(13-2) x0 时, 1cosxcos2xcos3x axn 是等价无穷小。求a,n.

分析:可以采用的策略很多,但是最快的是泰勒展开式,这里主要分析这个策略为什么可行。

其实一句话就能说明白:低阶吸收高阶。比如 x x2 同时出现, x+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值