泰勒公式推导

泰勒公式

  由于教材中讲解泰勒公式过于理论化,没有深刻理解,更是不知道其用途。
所以写篇博客,用于给自己加深印象。同时通过一些现实中的例子来加深泰勒公式的理解。

泰勒公式的一般形态
f ( x ) f(x) f(x) x 0 x_0 x0处有n阶导数,则有公式
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f n ( x 0 ) n ! + o [ ( x − x 0 ) n ] f(x)=f(x_0)+{f^{'}(x_0)\over 1!}(x-x0)+{f^{''}(x_0)\over 2!}(x-x_0)^2+...+{f^{n}(x_0)\over n!} +o[(x-x0)^n] f(x)=f(x0)+1!f(x0)(xx0)+2!f′′(x0)(xx0)2+...+n!fn(x0)+o[(xx0)n]

函数的目的是求 f ( x ) f(x) f(x)的值,导数从 x 0 x_0 x0处开始的,当然x越接近 x 0 x_0 x0,值就越准确,同时保留的阶数越多,也越精确。
泰勒公式第一项是 f ( x 0 ) f(x_0) f(x0)是x0处的函数值,第二项就是函数 f ( x ) f(x) f(x)的1阶导数乘以变化量。

泰勒公式的背景:用多项式逼近函数

我们先看任一个多项式
P n ( x ) = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + a 3 ( x − x 0 ) 3 + . . . + a n ( x − x 0 ) n P_n(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+a_3(x-x_0)^3+...+a_n(x-x_0)^n Pn(x)=a0+a1(xx0)+a2(xx0)2+a3(xx0)3+...+an(xx0)n
将这个多项式逐次求导得:
一次求导 P n ′ ( x ) = 1 ∗ a 1 + 2 ∗ a 2 ( x − x 0 ) + 3 ∗ a 3 ( x − x 0 ) 2 + . . . + n ∗ a n ( x − x 0 ) n − 1 P^{'}_n(x)=1*a_1+2*a_2(x-x_0)+3*a_3(x-x_0)^2+...+n*a_n(x-x_0)^{n-1} Pn(x)=1a1+2a2(xx0)+3a3(xx0)2+...+nan(xx0)n1

二次求导 P n ′ ( x ) = 2 ! ∗ a 2 + 3 ∗ 2 ∗ a 3 ( x − x 0 ) + . . . + n ∗ ( n − 1 ) a n ( x − x 0 ) n − 2 P^{'}_n(x)=2!*a_2+3*2*a_3(x-x_0)+...+n*(n-1)a_n(x-x_0)^{n-2} Pn(x)=2!a2+32a3(xx0)+...+n(n1)an(xx0)n2

三次求导 P n ′ ( x ) = 3 ! ∗ a 3 + . . . + n ∗ ( n − 1 ) ∗ ( n − 2 ) a n ( x − x 0 ) n − 3 P^{'}_n(x)=3!*a_3+...+n*(n-1)*(n-2)a_n(x-x_0)^{n-3} Pn(x)=3!a3+...+n(n1)(n2)an(xx0)n3

n次求导 P n ( n ) = n ∗ ( n − 1 ) ∗ ( n − 2 ) ∗ . . . ∗ 1 = n ! a n P^{(n)}_n=n*(n-1)*(n-2)*...*1=n!a_n Pn(n)=n(n1)(n2)...1=n!an

下面我们求出 x 0 x_0 x0处各阶的导数
P n ( x 0 ) = a 0 P_n(x_0)=a_0 Pn(x0)=a0 P ′ ( x 0 ) = a 1 P^{'}(x_0)=a_1 P(x0)=a1 P ′ ′ ( x 0 ) = 2 ! a 2 P^{''}(x_0)=2!a_2 P′′(x0)=2!a2 P ′ ′ ′ ( x 0 ) = 3 ! a 3 P^{'''}(x_0)=3!a_3 P′′′(x0)=3!a3,…, P n ( x 0 ) = n ! a n P^{n}(x_0)=n!a_n Pn(x0)=n!an

如果我们设定一个任意函数 f ( x ) f(x) f(x)假设有n阶导数,让 f ( x 0 ) f(x_0) f(x0)的值等于 P n ( x 0 ) P_n(x_0) Pn(x0),一阶导数 f ′ ( x 0 ) f^{'}(x_0) f(x0)等于 P n ′ ( x 0 ) P^{'}_n(x_0) Pn(x0),二阶导数 f ′ ′ ( x 0 ) f^{''}(x_0) f′′(x0)等于 P n ′ ′ ( x 0 ) P^{''}_n(x_0) Pn′′(x0),三阶导数 f ′ ′ ( x 0 ) f^{''}(x_0) f′′(x0)等于 P n ′ ′ ( x 0 ) P^{''}_n(x_0) Pn′′(x0),一直到n阶 f n ( x 0 ) f^{n}(x_0) fn(x0)等于 P n n ( x 0 ) P^{n}_n(x_0) Pnn(x0)

f ( x 0 ) = P n ( x 0 ) = a 0 f(x_0)=P_n(x_0)=a_0 f(x0)=Pn(x0)=a0
f ′ ( x 0 ) = P n ′ ( x 0 ) = a 1 f^{'}(x_0)=P^{'}_n(x_0)=a_1 f(x0)=Pn(x0)=a1
f ′ ′ ( x 0 ) = P n ′ ′ ( x 0 ) = 2 ! ∗ a 2 f^{''}(x_0)=P^{''}_n(x_0)=2!*a_2 f′′(x0)=Pn′′(x0)=2!a2
f ′ ′ ′ ( x 0 ) = P n ′ ′ ′ ( x 0 ) = 3 ! ∗ a 3 f^{'''}(x_0)=P^{'''}_n(x_0)=3!*a_3 f′′′(x0)=Pn′′′(x0)=3!a3

f n ( x 0 ) = P n n ( x 0 ) = n ! ∗ a n f^{n}(x_0)=P^{n}_n(x_0)=n!*a_n fn(x0)=Pnn(x0)=n!an

推导出多项式的系数
a 0 = f ( x 0 ) a_0=f(x_0) a0=f(x0), a 1 = f ′ ( x 0 ) a_1=f^{'}(x_0) a1=f(x0), a 2 = f ′ ′ ( x 0 ) 2 ! a_2=\frac {f^{''}(x_0)}{2!} a2=2!f′′(x0), a 3 = f ′ ′ ′ ( x 0 ) 3 ! a_3=\frac {f^{'''}(x_0)}{3!} a3=3!f′′′(x0),…, a n = f n ( x 0 ) n ! a_n=\frac {f^{n}(x_0)}{n!} an=n!fn(x0)

把系数重新带入
T n ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + f ′ ′ ′ ( x 0 ) 3 ! ( x − x 0 ) 3 + . . . + f n ( x 0 ) n ! ( x − x 0 ) n T_n(x)=f(x_0)+f^{'}(x_0)(x-x_0)+\frac {f^{''}(x_0)}{2!}(x-x_0)^2+\frac {f^{'''}(x_0)}{3!}(x-x_0)^3+...+\frac {f^{n}(x_0)}{n!}(x-x_0)^n Tn(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2+3!f′′′(x0)(xx0)3+...+n!fn(x0)(xx0)n

多项式 T n ( x ) T_n(x) Tn(x)的各项系数由 f ( x ) f(x) f(x)在点x0的各阶导数值所唯一确定的
从数感及直觉上 f ( x ) f(x) f(x) T n ( x ) T_n(x) Tn(x) x 0 x_0 x0处非常非常接近,其实这两个函数的误差是无穷小的。如何证明呢

下面我们证明一下 f ( x ) − T n ( x ) = o ( ( x − x 0 ) n ) f(x)-T_n(x)=o((x-x_0)^n) f(x)Tn(x)=o((xx0)n)

**定理:**若函数f在点 x 0 x_0 x0存在直到n阶的导数,则有f(x)=T_n(x)+o((x-x_0)^n),即:
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + . . . + f n ( x 0 ) n ! ( x − x 0 ) n + o ( ( x − x 0 ) n ) f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+...+\frac {f^{n}(x_0)}{n!}(x-x_0)^n+o((x-x_0)^n) f(x)=f(x0)+f(x0)(xx0)+...+n!fn(x0)(xx0)n+o((xx0)n)


证明: R n ( x ) = f ( x ) − T n ( x ) , Q n ( x ) = ( x − x 0 ) n R_n(x)=f(x)-T_n(x),Q_n(x)=(x-x_0)^n Rn(x)=f(x)Tn(x)Qn(x)=(xx0)n,则需要证明
lim ⁡ x → x 0 R n ( x ) Q n ( x ) = 0 \lim_{x \to x_0} \frac{R_n(x)}{Q_n(x)}=0 xx0limQn(x)Rn(x)=0
根据 洛必达法则 lim ⁡ x → x 0 R n ( x ) Q n ( x ) = lim ⁡ x → x 0 R n ′ ( x ) Q n ′ ( x ) = lim ⁡ x → x 0 R n ′ ′ ( x ) Q n ′ ′ ( x ) = . . . = lim ⁡ x → x 0 R n n − 1 ( x ) Q n n − 1 ( x ) = lim ⁡ x → x 0 f n − 1 ( x ) − T n n − 1 ( x ) n ! ( x − x 0 ) = 1 n ! lim ⁡ x → x 0 f n − 1 ( x ) − T n n − 1 ( x ) ( x − x 0 ) \lim_{x \to x_0} \frac{R_n(x)}{Q_n(x)}=\lim_{x \to x_0} \frac{R^{'}_n(x)}{Q^{'}_n(x)} =\lim_{x \to x_0} \frac{R^{''}_n(x)}{Q^{''}_n(x)}=...=\lim_{x \to x_0} \frac{R^{n-1}_n(x)}{Q^{n-1}_n(x)} =\lim_{x \to x_0} \frac{f^{n-1}(x)-T^{n-1}_n(x)}{n!(x-x_0)} = \frac{1}{n!}\lim_{x \to x_0} \frac{f^{n-1}(x)-T^{n-1}_n(x)}{(x-x_0)} xx0limQn(x)Rn(x)=xx0limQn(x)Rn(x)=xx0limQn′′(x)Rn′′(x)=...=xx0limQnn1(x)Rnn1(x)=xx0limn!(xx0)fn1(x)Tnn1(x)=n!1xx0lim(xx0)fn1(x)Tnn1(x)

然后已知 r n ( n − 1 ) ( x ) = f ( n − 1 ) ( x 0 ) − f ( n ) ( x 0 ) ( x − x 0 ) r^{(n-1)}_n(x)=f^{(n-1)}(x_0)-f^{(n)}(x_0)(x-x_0) rn(n1)(x)=f(n1)(x0)f(n)(x0)(xx0)
1 n ! lim ⁡ x → x 0 f n − 1 ( x ) − T n n − 1 ( x ) ( x − x 0 ) = 1 n ! lim ⁡ x → x 0 f n − 1 ( x ) − f ( n − 1 ) ( x 0 ) + f ( n ) ( x 0 ) ( x − x 0 ) ( x − x 0 ) = 1 n ! lim ⁡ x → x 0 f n − 1 ( x ) − f ( n − 1 ) ( x 0 ) + f ( n ) ( x 0 ) ( x − x 0 ) ( x − x 0 ) \frac{1}{n!}\lim_{x \to x_0} \frac{f^{n-1}(x)-T^{n-1}_n(x)}{(x-x_0)} =\frac{1}{n!}\lim_{x \to x_0} \frac{f^{n-1}(x)-f^{(n-1)}(x_0)+f^{(n)}(x_0)(x-x_0)}{(x-x_0)}= \frac{1}{n!}\lim_{x \to x_0} \frac{f^{n-1}(x)-f^{(n-1)}(x_0)+f^{(n)}(x_0)(x-x_0)}{(x-x_0)} n!1xx0lim(xx0)fn1(x)Tnn1(x)=n!1xx0lim(xx0)fn1(x)f(n1)(x0)+f(n)(x0)(xx0)=n!1xx0lim(xx0)fn1(x)f(n1)(x0)+f(n)(x0)(xx0)
= 1 n ! lim ⁡ x → x 0 f n − 1 ( x ) − f ( n − 1 ) ( x 0 ) ( x − x 0 ) + f ( n ) ( x 0 ) =\frac{1}{n!} \lim_{x \to x_0} \frac{f^{n-1}(x)-f^{(n-1)}(x_0)}{(x-x_0)}+f^{(n)}(x_0) =n!1limxx0(xx0)fn1(x)f(n1)(x0)+f(n)(x0)

其实前半部分 f n − 1 ( x ) − f ( n − 1 ) ( x 0 ) ( x − x 0 ) = f ( n ) ( x 0 ) \frac{f^{n-1}(x)-f^{(n-1)}(x_0)}{(x-x_0)}=f^{(n)}(x_0) (xx0)fn1(x)f(n1)(x0)=f(n)(x0)
所以 1 n ! lim ⁡ x → x 0 f n − 1 ( x ) − T n n − 1 ( x ) ( x − x 0 ) = 0 \frac{1}{n!}\lim_{x \to x_0} \frac{f^{n-1}(x)-T^{n-1}_n(x)}{(x-x_0)}=0 n!1limxx0(xx0)fn1(x)Tnn1(x)=0

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值