【机器学习】hist参数解读

在对数据进行可视化时,用hist来查看单一特征是很重要的,结合着看多种图表,有助于获得对数据的进一步理解。

本篇是对 https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.hist.html 的翻译 + 个人笔记。

先从它的定义看起,这个API太常用,所以有必要深入了解一下它的具体构成。

DataFrame.hist(column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds)

目的是对DataFrame构建一个直方图显示。

举个例子:

# 导入数据
filename 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值