Backpropagation 算法的推导与直观图解

摘要

本文是对 Andrew Ng 在 Coursera 上的机器学习课程中 Backpropagation Algorithm 一小节的延伸。文章分三个部分:第一部分给出一个简单的神经网络模型和 Backpropagation(以下简称 BP)算法的具体流程。第二部分以分别计算第一层和第二层中的第一个参数(parameters,在神经网络中也称之为 weights)的梯度为例来解释 BP 算法流程,并给出了具体的推导过程。第三个部分采用了更加直观的图例来解释 BP 算法的工作流程。

注:1. 文中有大量公式,在 PC 或大屏移动设备下阅读排版更佳

  2. 为了方便讨论,省去了 Bias unit,并在第二部分的讨论中省去了 cost function 的正则化项

  3. 如果熟悉 Ng 课程中使用的字符标记,则推荐的阅读顺序为:第一、第三、第二部分

 

第一部分 BP 算法的具体过程


图 1.1 给出了一个简单的神经网络模型(省去了 Bias unit):

图 1.1 一个简单的神经网络模型

图 1.1 一个简单的神经网络模型

 

其中字符标记含义与 Ng 课程中的一致:

x1,x2,x3 x1,x2,x3 为输入值,也即  x(i) x(i) 的三个特征;

  z(l)(j) z(j)(l) 为第 l 层的第 j 个单元的输入值。

  a(l)(j) a(j)(l) 为第 层的第 个单元的输出值。其中 a = g(z)g 为 sigmoid 函数。

  Θ(l)ij Θij(l) 第 l 层到 l+1 层的参数(权重)矩阵。

 

表 1.1 BP 算法的具体流程(Matlab 伪代码)

1    for i = m,

2         a(1)=x(i); a(1)=x(i);

3        使用前馈传播算法计算  a(2),a(3); a(2),a(3);

4         δ(3)=a(3)y(i); δ(3)=a(3)−y(i);                                                                

5         δ(2)=(Θ(2))Tδ(3).g(z(2)); δ(2)=(Θ(2))T∗δ(3).∗g′(z(2));  % 第 2 个运算符 ' .* ' 为点乘,即按元素操作

6         Δ(2)=Δ(2)+a(2)δ(3); Δ(2)=Δ(2)+a(2)∗δ(3);

7         Δ(1)=Δ(1)+a(1)δ(2); Δ(1)=Δ(1)+a(1)∗δ(2);

8    end;

 

第二部分 BP 算法步骤的详解与推导过程

 

BP 算法的目的在于为优化函数(比如梯度下降、其它的高级优化方法)提供梯度值,即使用 BP 算法计算代价函数(cost function)对每个参数的偏导值,其数学形式为: Θ(l)ijJ(Θ) ∂∂Θij(l)J(Θ),并最终得到的值存放在矩阵  Δ(l) Δ(l)中。

若神经网络有 K 个输出(K classes),那么其 J(Θ) 为:

J(Θ)=1mi=1mk=1K[y(i)klog(hΘ(x(i))k)+(1y(i)k)log(1hΘ(x(i))k)] J(Θ)=−1m∑i=1m∑k=1K[yk(i)log(hΘ(x(i))k)+(1−yk(i))log(1−hΘ(x(i))k)]

接下来,以计算  Θ(1)11,Θ(2)11 Θ11(1),Θ11(2) 为例来给出 BP 算法的详细步骤。对于单个训练用例,其代价函数为:

J(Θ)=[y(i)klog(hΘ(x(i))k)+(1y(i)k)log(1hΘ(x(i))k)]1 J(Θ)=−[yk(i)log(hΘ(x(i))k)+(1−yk(i))log(1−hΘ(x(i))k)](式1)

其中  hΘ(x)=a(l)=g(z(l)) hΘ(x)=a(l)=g(z(l)), g 为 sigmoid 函数。

 

计算  Θ(2)11 Θ11(2):

J(Θ)Θ(2)11=J(Θ)a31a(3)1z(3)1z(3)1Θ(2)112 ∂J(Θ)∂Θ11(2)=∂J(Θ)∂a13∗∂a1(3)∂z1(3)∗∂z1(3)∂Θ11(2)(式2)

先取出式 2 中等号右边前两项,并将其记为  δ(3)1 δ1(3)

δ(3)1=J(Θ)a31a(3)1z(3)13 δ1(3)=∂J(Θ)∂a13∗∂a1(3)∂z1(3)(式3)

这里给出  δ(l) δ(l) 的定义,即:

 

δ(l)=z(l)J(Θ)(i)4 δ(l)=∂∂z(l)J(Θ)(i)(式4)

对式 3 进行详细计算,即将  J(Θ) J(Θ) 对  z(3)1 z1(3) 求偏导(计算过程中简记为 z):

 

δ(3)1=J(Θ)a(3)1a(3)1z(3)1 δ1(3)=∂J(Θ)∂a1(3)∗∂a1(3)∂z1(3)

=[y1g(z)g(z)+(1y)11g(z)(g(z))] =−[y∗1g(z)∗g′(z)+(1−y)∗11−g(z)∗(−g′(z))]

=[y(1g(z))+(y1)g(z)] =−[y∗(1−g(z))+(y−1)∗g(z)]

=g(z)y=a(3)y =g(z)−y=a(3)−y

其中用到了 sigmoid 函数的一个很好的性质:

g(z)=g(z)(1g(z)) g′(z)=g(z)∗(1−g(z))(易证)

这样便得到了表 1.1 中 BP 算法的第四行过程。

接下来观察式 2 中等号右边最后一项   z(3)1Θ(2)11 ∂z1(3)∂Θ11(2)

其中  z(3)1=Θ(2)11a(2)1+Θ(2)12a(2)2+Θ(2)13a(2)3 z1(3)=Θ11(2)∗a1(2)+Θ12(2)∗a2(2)+Θ13(2)∗a3(2),则易得:

 

z(3)1Θ(2)11=a(2)15 ∂z1(3)∂Θ11(2)=a1(2)(式5)

再回头观察最初的式 2,代入式 3 和式 5,即可得到:

 

J(Θ)Θ(2)11=δ(3)1a(2)1 ∂J(Θ)∂Θ11(2)=δ1(3)∗a1(2)

这样便推导出了表 1.1 中 BP 算法的第六行过程。

至此,就完成了对  Θ(2)11 Θ11(2) 的计算。

 

计算  Θ(1)11 Θ11(1)

 

J(Θ)Θ(1)11=J(Θ)a31a(3)1z(3)1z(3)1a(2)1a(2)1z(2)1z(2)1Θ(1)116 ∂J(Θ)∂Θ11(1)=∂J(Θ)∂a13∗∂a1(3)∂z1(3)∗∂z1(3)∂a1(2)∗∂a1(2)∂z1(2)∗∂z1(2)∂Θ11(1)(式6)

类似地,根据式 4 中对  δ(l) δ(l) 的定义,可以把上式(即式 6)等号右边前四项记为   δ(2)1 δ1(2) 。即:

 

δ(2)1=J(Θ)a31a(3)1z(3)1z(3)1a(2)1a(2)1z(2)17 δ1(2)=∂J(Θ)∂a13∗∂a1(3)∂z1(3)∗∂z1(3)∂a1(2)∗∂a1(2)∂z1(2)(式7)

可以发现式 3 中的   δ(3)1 δ1(3)  是这个等式右边的前两项。

 

于是   δ(l) δ(l)  的意义就体现出来了:它是用来保存上一次计算的部分结果。在计算   δ(l1) δ(l−1)  时,可以使用这个部分结果继续向下逐层求偏导。这样在神经网络特别复杂、有大量计算时就可以节省大量重复的运算,从而有效地提高神经网络的学习速度。

 

继续观察式 7,其等号右边第三项易算得(已知   z(3)1=Θ(2)11a(2)1+Θ(2)12a(2)2+Θ(2)13a(2)3 z1(3)=Θ11(2)∗a1(2)+Θ12(2)∗a2(2)+Θ13(2)∗a3(2)):

 

z(3)1a(2)1=Θ(2)118 ∂z1(3)∂a1(2)=Θ11(2)(式8)

式 7 等号右边最后一项为:

 

a(2)1z(2)1=g(z(2)1)9 ∂a1(2)∂z1(2)=g′(z1(2))(式9)

将  δ(3)1 δ1(3)、式 8、式 9 代入式 7,即可得到:

 

δ(2)1=δ(3)1Θ(2)11g(z(2)1)10 δ1(2)=δ1(3)∗Θ11(2)∗g′(z1(2))(式10)

这样便推导出了表 1.1 中 BP 算法第五行过程。

接下来继续计算式 6 中等号右边最后一项,已知   z(2)1=Θ(1)11a(1)1+Θ(1)12a(1)2+Θ(1)13a(1)3 z1(2)=Θ11(1)∗a1(1)+Θ12(1)∗a2(1)+Θ13(1)∗a3(1),易得:

 

z(2)1Θ(1)11=a(1)111 ∂z1(2)∂Θ11(1)=a1(1)(式11)

将式 10、式 11 代入最开始的式 6 即可得:

 

J(Θ)Θ(1)11=δ(2)1a(1)1 ∂J(Θ)∂Θ11(1)=δ1(2)∗a1(1)

如此,即可得到表 1.1 中 BP 算法的第七行过程。

至此,就完成了对  Θ(1)11 Θ11(1) 的计算。

 

第三部分 BP 算法的直观图解

 

神经网络学习算法图概览

给定一个函数 f(x),它的首要求导对象是什么?就是它的输入值,是自变量 x。那 f(g(x)) 呢?即把g(x) 当作一个整体作为它的输入值,它的自变量。那么 g(x) 这个整体就是它的首要求导对象。因此,一个函数的求导对象是它的输入值,是它的自变量。弄清楚这一点,才能在求多元函数偏导的链式法则中游刃有余。

图 3.1 自下而上,每一个框是上面一个框的输入值,也即上面一个框中函数的自变量。这张图明确了神经网络中各数据之间的关系——谁是谁的输入值,图中表现得非常清楚。上段提到一个函数的求导对象是它的输入值,那么通过图 3.1 就能非常方便地使用链式法则,也能清楚地观察到 BP 算法的流程(后面一个小节会给出一个更具体的 BP 流程图)。

对照文首给出的图 1.1 神经网络的模型图,应该很容易理解图 3.1 的含义,它大致地展现了神经网络的学习(训练)流程。前馈传播算法自下而上地向上计算,最终可以得到  a(3) a(3),进一步可以计算得到  J(Θ) J(Θ)。而 BP 算法自顶向下,层层求偏导,最终得到了每个参数的梯度值。下面一个小节将仔细介绍本文的主题,即 BP 算法的流程图解。

图 3.1 神经网络学习算法概览

图 3.1 神经网络学习算法概览

 

BP 算法的直观图解

图 3.2 给出了 BP 算法的计算流程,并附上了具体的计算步骤。BP 算法的流程在这张图中清晰可见:自顶向下(对应神经网络模型为自输出层向输入层)层层求偏导。因为神经网络的复杂性,人们总是深陷于求多元函数偏导的泥潭中无法自拔:到底该对哪个变量求导?图 3.2 理顺了神经网络中各数据点之间的关系,谁是谁的输入值,谁是谁的函数一清二楚,然后就可以畅快地使用链式法则了。

图3.2 BP 算法流程

图3.2 BP 算法流程

 

所以 BP 算法即反向传播算法,就是自顶向下求代价函数  J(Θ) J(Θ) 对各个参数  Θ(l)ij Θij(l) 偏导的过程,对应到神经网络模型中即自输出层向输入层层层求偏导。在图 3.2 中,当反向传播到  a(2)1 a1(2) 结点时,遇到分叉路口:选择对  Θ(2)11 Θ11(2) 求偏导,即可得到第二层的参数梯度。而若选择对  a(2)1 a1(2) 这条路径继续向下求偏导,就可以继续向下(即输出层)传播,继续向下求偏导,最终可得到第一层的参数梯度,于是就实现了 BP 算法的目的。在选择分叉路口之前,使用  δ(l) δ(l) 来保存到达分岔路口时的部分结果(本文的第二部分对  δ(l) δ(l) 做出了精确定义)。那么如果选择继续向下求偏导,则还可以使用这个部分结果继续向下逐层求偏导。从而避免了大量的重复计算,有效地提升了神经网络算法的学习速度。

 

因此可以观察到 BP 算法两个突出特点:

1) 自输出层向输入层(即反向传播),逐层求偏导,在这个过程中逐渐得到各个层的参数梯度。

2) 在反向传播过程中,使用  δ(l) δ(l) 保存了部分结果,避免了大量的重复运算,因而该算法性能优异。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值