[转]【建议收藏】优秀实用的OpenCV开源项目汇总

技术_机器学习 专栏收录该内容
62 篇文章 1 订阅

1、Openpose

实时人体、脸、手、脚的关键点检测库

 

https://github.com/CMU-Perceptual-Computing-Lab/openpose

2、Learnopencv

学习OpenCV: c++和Python示例

https://github.com/spmallick/learnopencv

3、Faceai

一款入门级的人脸、视频、文字检测以及识别的项目.

https://github.com/vipstone/faceai

4、Mvision

机器人视觉 移动机器人 VS-SLAM ORB-SLAM2 深度学习目标检测 yolov3 行为检测 opencv PCL 机器学习 无人驾驶

https://github.com/Ewenwan/MVision

5、Tiler

Tiler是使用所有其他较小的图像(平铺)创建图像的工具。它与其他镶嵌工具不同,因为它可以适应具有多种形状和大小(即不限于正方形)的图块。图像可以由圆形,直线,波浪形,十字绣,乐高积木,Minecraft积木,回形针,字母等组成。

https://github.com/nuno-faria/tiler

6、Opencv4nodejs

Nodejs绑定到opencv3和opencv4

 

https://github.com/justadudewhohacks/opencv4nodejs

7、Sistine

使用1美元的硬件将MacBook变成触摸屏

https://github.com/bijection/sistine

8、Pigo

纯Go人脸检测、瞳孔/眼睛定位和人脸地标点检测库。

https://github.com/esimov/pigo

9、Opencvsharp

.NET框架包装OpenCV

https://github.com/shimat/opencvsharp

10、Trace.moe

图像反向搜索动漫场景,使用动漫截图搜索该场景的拍摄地。它告诉你该动画在日本动漫中出现的是哪个动画,哪个情节以及确切的时间。

https://github.com/soruly/trace.moe

11、Smartopencv

SmartOpenCV是一个OpenCV在Android端的增强库,解决了OpenCV Android SDK在图像预览方面存在的诸多问题,且无需修改OpenCV SDK源码,与OpenCV的SDK解耦

https://github.com/HuTianQi/SmartOpenCV

12、Mathai

一个拍照做题程序。输入一张包含数学计算题的图片,输出识别出的数学计算式以及计算结果。

https://github.com/Roujack/mathAI

13、Bgslibrary

一个c++的背景减法库和包装器,用于Python, MATLAB, Java和GUI的QT

https://github.com/andrewssobral/bgslibrary

14、Opencvforandroid

目标检测&目标追踪&人脸检测&人脸识别

https://github.com/kongqw/OpenCVForAndroid

15、Lbpcascade_animeface

一个使用OpenCV的动漫人脸检测器

https://github.com/nagadomi/lbpcascade_animeface

16、Vidgear

高性能的跨平台的视频处理Python框架

https://github.com/abhiTronix/vidgear

17、Object_detector_app

具有Tensorflow和OpenCV的实时对象识别应用

https://github.com/datitran/object_detector_app

18、Opentrack

用于微软Windows, Linux和苹果OSX的头部跟踪软件

https://github.com/opentrack/opentrack

19、Facetracker

基于opencv3的c++实时变形人脸跟踪。

https://github.com/kylemcdonald/FaceTracker

20、Imagepy

基于像imagej之类的插件的图像处理框架,可以说粘合scipy.ndimage,scikit-image,opencv,simpleitk,mayavi ...以及任何基于numpy的库。

https://github.com/Image-Py/imagepy

21、Tensorflow_object_counting_api

https://github.com/ahmetozlu/tensorflow_object_counting_api

22、Pixelannotationtool

快速注释图像

https://github.com/abreheret/PixelAnnotationTool

23、Human Detection And Tracking

Human-detection-and-Tracking

在这个项目中,我们研究了人类检测,面部检测,面部识别和跟踪个人的问题。我们的项目能够在给定的视频中检测到人及其面部,并能够存储检测到的面部的本地二进制直方图(LBPH)特征。LBPH特征是从图像中提取的关键点,用于识别和分类图像。在视频中检测到某个人后,我们便会跟踪为该人分配标签的人。我们已使用个人存储的LBPH功能在其他任何视频中识别它们。扫描完各种视频后,我们的程序将输出类似的内容,即在camera1拍摄的视频中看到标有subject1的人,而在camera2的视频中看到了subject1。通过这种方式,我们通过在多台摄像机拍摄的视频中识别出一个人来跟踪他/她。

https://github.com/ITCoders/Human-detection-and-Tracking

24、Eyelike

一种基于摄像头的瞳孔跟踪实现。

https://github.com/trishume/eyeLike

25、Anime Inpainting

动漫人物图片自动修复,去马赛克,填补,去瑕疵

https://github.com/youyuge34/Anime-InPainting

26、Dataaugmentationforobjectdetection

用于目标检测的数据增强

https://github.com/Paperspace/DataAugmentationForObjectDetection

27、Idcardgenerator

身份证图片生成工具

https://github.com/airob0t/idcardgenerator

27、Opencv_for_ios_book_samples

"OpenCV for iOS" book samples

https://github.com/opencv/opencv_for_ios_book_samples

28、Openlabeling

为计算机视觉应用程序标记图像和视频

https://github.com/Cartucho/OpenLabeling

29、Makeup

让你的“女神”逆袭,代码撸彩妆(画妆)。本项目是一个Android Project,用Canvas给人脸化妆(画妆)的APP演示项目。主要内容包括:

  • 唇彩,美瞳,粉底,眼影,腮红,眼线,双眼皮,眉毛等,能画的妆,都画了

  • 利用图形局部变形算法进行大眼,瘦脸,丰胸,大长腿等

  • 磨平/美白

https://github.com/DingProg/Makeup

30、Nowatermark

去除图片中的水印

https://github.com/SixQuant/nowatermark

关于更多机器学习、人工智能、增强现实资源和技术干货,可以关注公众号:AIRX社区,共同学习,一起进步!

 

  • 0
    点赞
  • 0
    评论
  • 3
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
OpenCV小项目 这是一个个人在使用OpenCV过程中写一些小项目,以及一些非常有用OpenCV代码,有些代码是对某论文中部分实现。 注意:代码是在Xcode里写,如果要在win下测试,遇到问题自己修改。 opencv-rootsift-py 用python和OpenCV一个rootsift实现,其中RootSIFT部分代码参照Implementing RootSIFT in Python and OpenCV这篇文章所写,通过这个你可以了解Three things everyone should know to improve object retrieval这篇文章中RootSIFT是怎么实现。 sift(asift)-match-with-ransac-cpp 用C++和OpenCV一个图像匹配实现,里面包含了采用1NN匹配可视化、1NN匹配后经RANSAC剔除错配点可视化、1NN/2NN<0.8匹配可视化、1NN/2NN<0.8经 RANSAC剔除错配点可视化四个过程,其中1NN/2NN<0.8匹配过程是LoweRaw feature match,具体可以阅读LoweDistinctive image features from scale-invariant keypoints这篇文章。这个对图像检索重排非常有用。另外里面还有用OpenCVASIFT,这部分来源于OPENCV ASIFT C++ IMPLEMENTATION,ASIFT还可以到官网页面下载,ASIFT提取关键点 比SIFT要多得多,速度非常慢,不推荐在对要求实时性应用中使用。 更多详细分析可以阅读博文SIFT(ASIFT) Matching with RANSAC。 有用链接 OpenCV3.0文档 // 测试sparse unsigned int centersNum = 10; vector<unsigned int> descrNums; descrNums.push_back(8); descrNums.push_back(12); //unsigned int T[] = {1, 2, 1, 3, 2, 5, 4, 3, 10, 5; 4, 2, 6, 5, 2, 5, 4, 6, 2, 4}; unsigned int T[] = {1, 2, 1, 3, 2, 5, 4, 3, 10, 5, 4, 2, 6, 5, 2, 5, 4, 6, 2, 4}; sp_mat Hist(descrNums.size(), centersNum); static long int count = 0; for (int i = 0; i < descrNums.size(); i++){ unsigned int* desrcElementsTmp = new unsigned int[descrNums[i]]; memcpy(desrcElementsTmp, T + count, descrNums[i] * sizeof(T[0])); //cout << desrcElementsTmp[0] << '\t' << desrcElementsTmp[1] << '\t' << desrcElementsTmp[2] << '\t' << desrcElementsTmp[3] << '\t' << desrcElementsTmp[4] << '\t' <<endl; //cout << desrcElementsTmp[5] << '\t' << desrcElementsTmp[6] << '\t' << desrcElementsTmp[7] << '\t' << desrcElementsTmp[8] << '\t' << desrcElementsTmp[9] << '\t' << desrcElementsTmp[10] << '\t' <<endl; //cout << endl; sp_mat X(1, centersNum); X.zeros(); for (int j = 0; j < descrNums[i]; j++){ X(0, desrcElementsTmp[j]-1) += 1; } X.print("X:"); X = X/norm(X, 2); Hist.row(i) = X; count = count + descrNums[i]; delete desrcElementsTmp; } //Hist.print("Hist:");
©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值