视频多标签分类Conv3D实现

本文介绍了如何利用Conv3D神经网络对视频进行多标签分类。首先抓取视频样本,然后将视频切片为帧,接着将帧转换为数组。通过Conv3D网络对视频信息进行嵌入,并通过全连接层与sigmoid激活函数结合二元交叉熵损失函数进行多标签分类。这种方法端到端预测,适用于视频分类和打标任务,但可能忽略帧的时序信息,需要大量样本。
摘要由CSDN通过智能技术生成

实现流程简要概括:

  1. 抓取样本videos
  2. 视频内容切片为frame(每帧或每几帧)
  3. Conv3D神经网络(视频信息嵌入)
  4. 全连层 sigmoid+binary CE 多标签分类

优点是实现端对端预测,可直接用于下游任务:分类、打标等等
缺点是未考虑frame的时序信息,切分类结果通常较general,且依赖大量样本

1. Frame 提取方式

import cv2
import numpy as np
import os

def mkdir(path):
    folder = os.path.exists(path)
    if not folder:
        os.makedirs(path)
        
def v2frame(videoPath, svPath, num_frame=450, size=120):
	# 保留所有帧,每个视频取450frame,不足的以黑画面补全
    cap = cv2.VideoCapture(videoPath)
    suc, frame = cap.read()
    frame_count = 0
    while(frame_count<num_frame):
        if(suc):
            frame=cv2.resize(frame,(size,size),interpolation=cv2.INTER_AREA)
        else:
            frame = np.zeros((size,size,3), np.uint8)
        cv2.imwrite(svPath+'/%d.jpg' % frame_count, frame)#, params)
        if(suc):
            suc, frame = cap.read()
        frame_count += 1
    cap.release()
    
filenames = tuple(os.listdir("videos"))
filenames = [x.split(".")[0] for x in filenames]
for filename in filenames
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值