计算机视觉与深度学习 | LSTM原理及与卡尔曼滤波的融合

  • 长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),旨在解决传统RNN在处理长序列数据时出现的梯度消失和梯度爆炸问题。以下为你详细介绍其基本原理:
    在这里插入图片描述
  • 核心思想:LSTM的核心思想是引入记忆单元和门控机制来控制信息的流动,从而解决传统RNN的梯度消失问题。记忆单元类似于一个容器,可以存储长期依赖信息,其初始状态为零向量,在每个时间步长都会根据输入信息和隐藏状态进行更新。
  • 结构组成:LSTM由输入层、隐藏层和输出层组成,其中隐藏层包含多个LSTM单元。每个LSTM单元包含遗忘门、输入门、输出门和细胞状态。
    在这里插入图片描述

门控机制:

  • 遗忘门:决定哪些信息需要从记忆单元中遗忘。它通过一个sigmoid层实现,输出一个0到1之间的数值,表示信息保留或遗忘的程度,1表示“完全保留”,0表示“完全遗忘”。选择性遗忘机制可以避免长期依赖关系被无用信息淹没。
  • 输入门&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

单北斗SLAMer

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值