R函数:survival::coxph()和survival::basehaz()

在R中,通过`survival`包的`coxph`函数拟合了Cox比例风险模型,并利用`basehaz`函数获取了基准累积风险函数Breslow估计。文章讨论了如何从Cox回归得到系数估计并计算基准累积风险函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

右删失数据下PH模型拟合后,得到回归参数基准累积风险函数(baseline cumulative hazard function),其中基准累积风险函数H(t)使用breslow估计得到:

代码,只是为了说明这个问题

res.cox <- survival::coxph(survival::Surv(time, status == 2) ~ X1 +X2,
           data = auxData)

bhest <- survival::basehaz(res.cox, centered = FALSE) ## get baseline cumulative hazards
    estR <- res.cox$coefficients #得到cox回归参数的估计


 cumHazards = bhest$hazard, #使用Breslow估计baseline hazard function得到的基准累积风险函数
 breakPoints = bhest$time

参考:r - Cox baseline hazard - Cross Validated

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值