# 1. 三维空间中两点间的距离

设两点为 P1(x1,y1,z1), P2(x2,y2,z2), 则两点间的距离为：

float distance=CalTwoPointDistance(x1,y1,z1,x2,y2,z2);
float CalTwoPointDistance(float x1,float y1,float z1,float x2,float y2,float z2)
{
float distance=0.0f;
distance=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2));
return distance;
}

# 2. 三维空间有向线段与坐标轴的夹角

设两点为 P1(x1,y1,z1), P2(x2,y2,z2), 则由P1指向P2的有向线段P1P2与X轴的夹角为：

float angle=CalLineToXAngle(x1,y1,z1,x2,y2,z2);
float CMesh::CalLineToXAngle(float x1,float y1,float z1,float x2,float y2,float z2)//1->2
{
if ((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)==0)
{
return 0.0f;
}
float linevector[3]={x2-x1,y2-y1,z2-z1};
float linex[3]={1.0f,0.0f,0.0f};
float cosangle=(x2-x1)/sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1));
if (cosangle<-1||cosangle>1)
{
ASSERT(1);
}
//
float langle=acos(cosangle);
//
float angle=langle*180.0f/PI;
if (angle<0||angle>180)
{
ASSERT(1);
}
return angle;
}

$\cos{\theta} = \frac{\mathbf{a \cdot b}}{|\vec{a}| \, |\vec{b}|}$

# 4. 三维空间中平面与直线的交点

bool CalPlaneLineIntersectPoint(float *planeNVector, float *planePoint, float *lineVector, float *linePoint,
float &resultx,float &resulty,float &resultz)
{
float vp1, vp2, vp3, n1, n2, n3, v1, v2, v3, m1, m2, m3, t,vpt;
vp1 = planeNVector[0];
vp2 = planeNVector[1];
vp3 = planeNVector[2];
n1 = planePoint[0];
n2 = planePoint[1];
n3 = planePoint[2];
v1 = lineVector[0];
v2 = lineVector[1];
v3 = lineVector[2];
m1 = linePoint[0];
m2 = linePoint[1];
m3 = linePoint[2];
vpt = v1 * vp1 + v2 * vp2 + v3 * vp3;  //法向量跟直线向量的数量积
//首先判断直线是否与平面平行
if (vpt == 0)
{
return false;
}
else
{
t = ((n1 - m1) * vp1 + (n2 - m2) * vp2 + (n3 - m3) * vp3) / vpt;
resultx = m1 + v1 * t;
resulty = m2 + v2 * t;
resultz = m3 + v3 * t;
}
//
return true;
}  

﻿﻿

﻿﻿
﻿﻿

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120