三维空间中关于点线面的计算

1. 三维空间中两点间的距离

    设两点为 P1(x1,y1,z1), P2(x2,y2,z2), 则两点间的距离为:

float distance=CalTwoPointDistance(x1,y1,z1,x2,y2,z2);
float CalTwoPointDistance(float x1,float y1,float z1,float x2,float y2,float z2)
{
	float distance=0.0f;
	distance=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2));
	return distance;
}

2. 三维空间有向线段与坐标轴的夹角

    设两点为 P1(x1,y1,z1), P2(x2,y2,z2), 则由P1指向P2的有向线段P1P2与X轴的夹角为:

float angle=CalLineToXAngle(x1,y1,z1,x2,y2,z2);
float CMesh::CalLineToXAngle(float x1,float y1,float z1,float x2,float y2,float z2)//1->2
{
	if ((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)==0)
	{
		return 0.0f;
	}
	float linevector[3]={x2-x1,y2-y1,z2-z1};
	float linex[3]={1.0f,0.0f,0.0f};
	float cosangle=(x2-x1)/sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1));
	if (cosangle<-1||cosangle>1)
	{
		ASSERT(1);
	}
	//
	float langle=acos(cosangle);
	//
	float angle=langle*180.0f/PI;
	if (angle<0||angle>180)
	{
		ASSERT(1);
	}
	return angle;
}

其算法思想就是计算P1P2向量与X轴向量的数量积,然后除以两向量的模长即为两向量的夹角余弦值。

 \cos{\theta} = \frac{\mathbf{a \cdot b}}{|\vec{a}| \, |\vec{b}|}

3.三维空间中平面的法向量计算

参考我的博客文章:

http://blog.csdn.net/u011442652/article/details/37727977

4. 三维空间中平面与直线的交点

    其原理参考博客:http://blog.csdn.net/abcjennifer/article/details/6688080

bool CalPlaneLineIntersectPoint(float *planeNVector, float *planePoint, float *lineVector, float *linePoint,
								float &resultx,float &resulty,float &resultz)  
{  
	float vp1, vp2, vp3, n1, n2, n3, v1, v2, v3, m1, m2, m3, t,vpt;  
	vp1 = planeNVector[0];  
	vp2 = planeNVector[1];  
	vp3 = planeNVector[2];  
	n1 = planePoint[0];  
	n2 = planePoint[1];  
	n3 = planePoint[2];  
	v1 = lineVector[0];  
	v2 = lineVector[1];  
	v3 = lineVector[2];  
	m1 = linePoint[0];  
	m2 = linePoint[1];  
	m3 = linePoint[2];  
	vpt = v1 * vp1 + v2 * vp2 + v3 * vp3;  //法向量跟直线向量的数量积
	//首先判断直线是否与平面平行  
	if (vpt == 0)  
	{  
		return false;
	}  
	else  
	{  
		t = ((n1 - m1) * vp1 + (n2 - m2) * vp2 + (n3 - m3) * vp3) / vpt;  
		resultx = m1 + v1 * t;  
		resulty = m2 + v2 * t;  
		resultz = m3 + v3 * t;  
	}  
	//
	return true;  
}  





在Python计算三维空间某个点到三角形表面的最短距离通常涉及到向量几何和点线面之间的距离计算。首先,我们需要假设给定的是一个已知的三维三角形顶点列表和目标点。以下是一个基本步骤的概述: 1. 确定三角形的三个顶点,例如 `A`, `B`, 和 `C`。 ```python A = (x1, y1, z1) B = (x2, y2, z2) C = (x3, y3, z3) ``` 2. 计算目标点到每个边的向量,并找到其两个非共线边构成的平面。 3. 使用向量叉乘得到法向量 `n = cross_product AB, AC`。 4. 然后,计算目标点 `P` 到该法向量的投影 `proj_n = dot_product(n, P - A) / length(n)`。 5. 根据这个投影,确定哪条边上离点 `P` 最近。如果投影小于0,则最近点在AB段;如果投影大于等于边长AC,最近点在AC段;否则在BC段。 6. 接着,检查目标点是否在线段上,如果是则直接计算到这条线段两端点的距离并取最小值。 7. 如果不在,计算目标点到最近边的垂足 `Q`,其位置是 `Q = A + proj_n * n`。 8. 最后,计算从 `Q` 到对面顶点(不是最近边上的顶点)的距离作为最短距离。 ```python # 向量函数 def cross_product(v1, v2): x = v1[1] * v2[2] - v1[2] * v2[1] y = v1[2] * v2[0] - v1[0] * v2[2] z = v1[0] * v2[1] - v1[1] * v2[0] return [x, y, z] def dot_product(v1, v2): return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2] def distance_to_triangle(P, A, B, C): # ... 进行上述步骤计算 ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值