空间解析几何——直线与平面
三维空间中的直线和平面与二维空间中的性质有一定的类似之处,但是其相交关系的求解方式有所差异。本文回顾了三维空间中直线和平面的解析表达,然后推导线-线
、线-面
交点。
平面
空间平面的表达式为:
Ax+By+Cz+D=0(1)Ax+By+Cz+D=0\tag{1}Ax+By+Cz+D=0(1)
包含了4个参数A,B,C,DA,B,C,DA,B,C,D,(A,B,C)(A,B,C)(A,B,C)是平面的一个法向量。但是它们并非独立的,即法向量的长度可以是任意的。
若限定A,B,CA,B,CA,B,C三个参数满足:
A2+B2+C2=1(2)A^2+B^2+C^2=1\tag{2}A2+B2+C2=1(2)
此时(A,B,C)(A,B,C)(A,B,C)是平面的单位法向量,DDD表示坐标原点到该平面的距离。方便起见,下面的讨论默认平面的A,B,C参数满足(2)式。
本质上,空间平面仅需要三个参数确定:(nx,ny,1)(n_x,n_y,1)(nx,ny,1)描述其法向量(仅需2参数),ddd描述其到原点的距离,表达式为nxx+nyy+z+d=0n_x x+n_y y+z+d=0nxx+nyy+z+d=0,与(1)是等价的。
直线
空间直线的一种表达是:两个平面的交。用π1,π2\pi_1,\pi_2π1,π2表示两个不平行、不共面的平面,则一条空间直线可以表达为
l=π1∩π2→l={
A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0l=\pi_1\cap\pi_2\rightarrow l=\begin{cases}A_1 x+B_1 y+C_1 z+D_1=0\\A_2 x+B_2 y+C_2 z+D_2=0\end{cases}l=π1∩π2→l={
A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0
显然,这种表达方式不是唯一的。一条空间直线可能是无数对平面的交线。
空间直线更常用的表达式为:
x−x0a=y−y0b=z−z0c\dfrac{x-x_0}{a}=\dfrac{y-y_0}{b}=\dfrac{z-z_0}{c}ax−x0=by−y0=cz−z0
包含6个参数x0,y0,z0,a,b,cx_0,y_0,z_0, a,b,cx0,y0,z0,a,b,c,(a,b,c)(a,b,c)(a,b,c)是直线的方向向量,其长度任意,因而相当于只有两个独立参数;(x0,y0,z0)(x_0,y_0,z_0)(x0,y0,z0)是直线上一点。因此,一条空间直线只需要5个独立参数即可描述。
点到平面的距离
点(x1,y1,z1)(x_1,y_1,z_1)(x1,y1,z1)到平面Ax+By+Cz+D=0Ax+By+Cz+D=0Ax+By+Cz+D=0的距离为:
d=∣Ax1+By1+Cz1+D∣A2+B2+C2d=\dfrac{|Ax_1+By_1+Cz_1+D|}{\sqrt{A^2+B^2+C^2}}