目标检测解决多尺度问题

相关链接 深度学习的目标检测算法是如何解决尺度问题的? - 极市社区

1.针对小目标

Perceptual Generative Adversarial Networks for Small Object Detection   CVPR2017文章

2.多尺度问题

UC San DiegoSVCL实验室和IBM研究院的MSCNN:A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection。这篇文章发表在ECCV2016。

STDN: Scale-Transferrable Object Detection,这篇文章发表在CVPR2018,这篇文章提出了一个STDN网络用语多目标检测效果的提升。

An Analysis of Scale Invariance in Object Detection – SNIP ,这篇也是CVPR2018的文章。这篇文章想探讨的是Scale变化对识别和检测的影响,然后就是upsample对于小物体的检测是否有用。

SNIPER: Efficient Multi-Scale Training ,这篇文章发布在NIPS2018,项目地址为mahyarnajibi/SNIPER

Scale-Aware Trident Networks for Object Detection 这篇是图森Naiyan Wang的TridentNet ,这篇文章的创新点我可以在这里说一下,主要是基于感受野的控制来实现多尺度目标的检测,本文通过三个branch来实现多尺度目标的感受野,三个branch共享权重,感受野的大小通过dilation rate来控制,同时通过scale aware training 的方式来过了三个branch的检测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AICVer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值