吴恩达提的人生建议——兴趣并非成功之母

标签: 机器学习 吴恩达 人生建议
46人阅读 评论(0) 收藏 举报

整理自Interview with Andrew Ng https://zhuanlan.zhihu.com/p/25718297

Career Advice

  • “Follow your passion” is not good career advice. Often, you first become good at something, and then you become passionate about it.  To find opportunities that had a lot of potential for impact and also gave you fantastic opportunities to learn.
  • The world has an infinite supply of interesting problems. The world also has an infinite supply of important problems. I would love for people to focus on the latter.
  •  To de-risk projects early. Or else, you may do step one,  do step two, do step three, and then you realize that step four has been impossible all along.
  • Creating habits instead of counting on willpower, because willpower peters out.


Innovation Strategy

  • Two of the most efficient ways to learn, to get information, are reading and talking to experts. When you read enough or talk to enough experts, when you have enough inputs, new ideas start appearing.  
  • When you become sufficiently expert in the state of the art, you stop picking ideas at random. You are thoughtful in how to select ideas, and how to combine ideas. You are thoughtful about when you should be generating many ideas versus pruning down ideas.
  • Meet some of the top people and see a huge diversity of points of view.

 

Book Recommendations

  • "Zero to one": gives an overview of entrepreneurship and innovation.
  • "The Lean Startup": gives one specific tactic for innovating quickly.
  • "Talking to Humans": teaches you how to develop empathy for users you want to serve by talking to them. 
  • "Rocket Surgery Made easy": teaches you different tactics for learning about users, either through user studies or by interviews.
  • "The Hard Thing about Hard Things":  covers a lot of useful territory on what building an organization is like.
  • "So Good They Can't Ignore You":  gives a valuable perspective on how to select a path for one’s career.

 

The Trend

  • Automated driving might happen in the next decade or so.
  • AI is many decades away (if not longer) from achieving something akin to consciousness.
  • A rocket ship is a giant engine together with a ton of fuel. Both need to be really big. If you have a lot of fuel and a tiny engine, you won’t get off the ground. If you have a huge engine and a tiny amount of fuel, you can lift up, but you probably won’t make it to orbit. So you need a big engine and a lot of fuel. The reason that machine learning is really taking off now is that we finally have the tools to build the big rocket engine — that is giant computers, that's our rocket engine. And the fuel is the data. We finally are getting the data that we need. We need even bigger rocket engines and we still need even more rocket fuel. Both are still constrained and the two have to grow together. 

The Nature of Machine Learning

  • So as far as I can tell, the only was we know way to teach strategic skills is by example, by seeing tons of examples.  Instead of having everyone spend five years before you see enough examples, to deliver many examples in a much more compressed time frame.


User Experience

  • One thing about speech recognition: most people don’t understand the difference between 95 and 99 percent accurate. Ninety-five percent means you get one-in-20 words wrong. That’s just annoying, it’s painful to go back and correct it on your cell phone. Ninety-nine percent is game changing. If there’s 99 percent, it becomes reliable. It just works and you use it all the time. So this is not just a four percent incremental improvement, this is the difference between people rarely using it and people using it all the time.


Baidu

  • Decision making is pushed very far down in the organization at Baidu. (which brings the infightings)
查看评论

(吴恩达笔记 2-1)——支持向量机SVM

支持向量机该算法属于监督学习的一种,并且svm是最好的现成的分类器,这里说的现成的是可以不加修改直接使用,这就意味着,在数据上应用基本形式的svm分类器就可以得到低错误率的结果。svm能对训练集以外的...
  • wearge
  • wearge
  • 2017-08-10 20:42:52
  • 1497

吴恩达机器学习二:线性代数

器学习学者张志华教授曾经说过:“搞好机器学习,关键是数学,但你又不能把机器学习变成搞数学,那样就漫无边际了。”数学浩瀚如海,神灵通天,我们还是要敬畏数学之神,不要毫无目标、不计成本的扩大数学的钻研,而...
  • kwame211
  • kwame211
  • 2017-09-20 09:48:30
  • 665

吴恩达深度学习课程值不值得学?四晚学完的高手给你建议

8 月 8 日,吴恩达发布了自己的深度学习在线课程,来自全球的 AI 爱好者再次围在这位人工智能专家身边,希望能从这门课里学到更多知识,正在看这篇文章的你或许也想报名参加,先别忙,有位大神花了四个晚上...
  • friendlbl
  • friendlbl
  • 2017-09-22 09:03:38
  • 668

吴恩达Deeplearning.ai课程学习全体验:深度学习必备课程 By 路雪2017年8月14日 11:44 8 月 8 日,吴恩达正式发布了 Deepleanring.ai——基于 Cours

吴恩达Deeplearning.ai课程学习全体验:深度学习必备课程 By 路雪2017年8月14日 11:44 8 月 8 日,吴恩达正式发布了 Deepleanring.ai—...
  • starzhou
  • starzhou
  • 2017-08-14 13:04:22
  • 2869

机器学习进阶路上不可错过的 28 个视频

想自学机器学习和深度学习?不妨边看专家讲解视频边自学。不仅能感受世界各地专家的熏陶,也能快速获取知识,一举两得。这篇文章整理了一个 YouTube 视频列表,供希望在该领域学习的朋友使用。   视频...
  • haifengid
  • haifengid
  • 2016-07-13 19:03:44
  • 13941

吴恩达深度学习课后编程题讲解(python)

小博极其喜欢这位人工智能领域大牛,非常膜拜,早在他出机器学习的课程的时候,就对机器学习产生了浓厚的兴趣,最近他又推出深度学习的课程,实在是又大火了一把,小博怎能不关注呢,我也跟随着吴恩达老师慢慢敲开深...
  • xiao__run
  • xiao__run
  • 2017-09-25 21:05:43
  • 2068

斯坦福吴恩达-cousera课程笔记-Logistic回归

Logistic回归是应用广泛的分类算法
  • xy1222
  • xy1222
  • 2014-06-20 23:10:57
  • 1612

吴恩达的机器学习书籍

  • 2017年09月04日 21:17
  • 37.17MB
  • 下载

吴恩达机器学习笔记(2) 逻辑回归

逻辑回归
  • u014202086
  • u014202086
  • 2017-08-09 10:39:00
  • 585

Coursera吴恩达机器学习课程 编程作业

下面作者的博客里机器学习分类下面有一系列答案,仅供参考,有不对的 Coursera吴恩达机器学习课程 总结笔记及作业代码——第1,2周...
  • afanyusong
  • afanyusong
  • 2017-08-17 10:41:56
  • 2252
    个人资料
    等级:
    访问量: 3702
    积分: 70
    排名: 158万+
    文章分类
    文章存档
    最新评论