计算机视觉和图像处理相关的国际会议一览表

Level Conference Name Conference Location Submission Deadline Conference Date Website ★★★★★ SIGG...

2016-10-25 10:14:52

阅读数:769

评论数:0

Training Region-based Object Detectors with Online Hard Example Mining(CVPR2016 Oral)

转载自:http://zhangliliang.com/2016/04/13/paper-note-ohem/ Training Region-based Object Detectors with Online Hard Example Mining是CMU实验室和rbg大神合作的pape...

2016-10-21 10:59:39

阅读数:908

评论数:0

深度学习中的数学与技巧(13):神经网络之激活函数

神经网络之激活函数(Activation Function) 本博客仅为作者记录笔记之用,不免有很多细节不对之处。 还望各位看官能够见谅,欢迎批评指正。 更多相关博客请猛戳:http://blog.csdn.net/cyh_24 如需转载,请附上本文链接:http://blog.csd...

2016-10-21 10:46:57

阅读数:1753

评论数:0

FFmepg参考笔记与例程

http://blog.csdn.net/leixiaohua1020/article/category/1360795 逝者如斯,感恩 ===================================================== 最简单的基于FFmpeg的移动端例子系列文...

2016-10-21 10:32:11

阅读数:365

评论数:0

深度学习中的数学与技巧(12):机器学习网易公开课笔记

吴恩达(Andrew Ng)07年在网易公开课上的课程。一共20讲。每看完一个视频,我都要总结出基本思想及公式推导过程。今特组成专栏,希望能帮到大家。 http://blog.csdn.net/column/details/ml-ng-record.html

2016-10-21 10:18:38

阅读数:721

评论数:0

施一公:优秀博士如何养成(全文) 清华大学演讲

**************************************************************************** 我们只能自己寻找导师,而不是那些只会酒桌文化的领导。 时间:2012年6月27日 来源:清华大学 (一)    ...

2016-10-20 19:54:03

阅读数:555

评论数:0

深度学习中的数学与技巧(11):dropout原理解读

理解dropout 注意:图片都在github上放着,如果刷不开的话,可以考虑翻墙。 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/49022443 开篇明义,dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一...

2016-10-20 19:49:33

阅读数:2421

评论数:0

深度学习中的数学与技巧(10):PCA的数学原理

reference:http://blog.codinglabs.org/articles/pca-tutorial.html PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主...

2016-10-20 18:25:52

阅读数:1311

评论数:0

深度学习中的数学与技巧(9):协方差矩阵的几何解释

reference:https://www.cnblogs.com/nsnow/p/4758202.html A geometric interpretation of the covariance matrix http://www.visiondummy.com/2014/04...

2016-10-20 17:32:18

阅读数:1464

评论数:0

深度学习中的数学与技巧(8):矩阵及其变换、特征值与特征向量的物理意义

reference:https://www.cnblogs.com/chaosimple/p/3172039.html 最近在做聚类的时候用到了主成分分析PCA技术,里面涉及一些关于矩阵特征值和特征向量的内容,在网上找到一篇对特征向量及其物理意义说明较好的文章,整理下来,分享一下。  ...

2016-10-20 17:23:27

阅读数:1698

评论数:0

深度学习中的数学与技巧(7):特征值和特征向量的几何意义、计算及其性质

一、特征值和特征向量的几何意义 特征值和特征向量确实有很明确的几何意义,矩阵(既然讨论特征向量的问题,当然是方阵,这里不讨论广义特征向量的概念,就是一般的特征向量)乘以一个向量的结果仍是同维数的一个向量。因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量。 那么变换的效果是什么呢?...

2016-10-20 10:48:03

阅读数:1837

评论数:0

深度学习中的数学与技巧(6): 详解协方差与协方差矩阵计算

协方差的定义   对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来。网上值得参考的资料也不多,这里用一个例子说明协方差矩阵是怎么计算出来的吧。 记住,X、Y是一个列向量,它表示了每种情况下每个样本可能出现...

2016-10-20 10:39:23

阅读数:8354

评论数:2

深度学习中的数学与技巧(5):白化whitening

一、相关理论     白化这个词,可能在深度学习领域比较常遇到,挺起来就是高大上的名词,然而其实白化是一个比PCA稍微高级一点的算法而已,所以如果熟悉PCA,那么其实会发现这是一个非常简单的算法。     白化的目的是去除输入数据的冗余信息。假设训练数据是图像,由于图像中相邻像素之间具有很强的...

2016-10-19 15:47:32

阅读数:2586

评论数:0

深度学习中的数学与技巧(4): BatchNormalization 代码实现

BatchNormalization是神经网络中常用的参数初始化的方法。其算法流程图如下:  我们可以把这个流程图以门电路的形式展开,方便进行前向传播和后向传播:  那么前向传播非常简单,直接给出代码: def batchnorm_forward(x, gamma, beta, eps):...

2016-10-19 15:43:27

阅读数:1990

评论数:0

深度学习中的数学与技巧(3):从Bayesian角度浅析Batch Normalization

前置阅读:http://blog.csdn.net/happynear/article/details/44238541——Batch Norm阅读笔记与实现 前置阅读:http://www.zhihu.com/question/38102762——知乎网友 Deep Learning与B...

2016-10-19 15:41:36

阅读数:1115

评论数:0

深度学习中的数学与技巧(2):《Batch Normalization Accelerating Deep Network Training by Reducing Interna

今年过年之前,MSRA和Google相继在ImagenNet图像识别数据集上报告他们的效果超越了人类水平,下面将分两期介绍两者的算法细节。   这次先讲Google的这篇《Batch Normalization Accelerating Deep Network Training by Redu...

2016-10-19 15:37:09

阅读数:756

评论数:0

深度学习中的数学与技巧(1):BN之利用随机前馈神经网络生成图像观察网络复杂度

零、声明 这是一篇失败的工作,我低估了batch normalization里scale/shift的作用。细节在第四节,请大家引以为戒。 一、前言   关于神经网络的作用有一个解释:它是一个万能函数逼近器。通过BP算法调整权重,在理论上神经网络可以近似出任意的函数。    当然,要近似出来...

2016-10-19 15:28:00

阅读数:1237

评论数:0

使用GraphViz画caffe/torch的网络结构图

caffe的Python接口中有一个很不错的功能:画网络结构图,虽然画得并不好看,但可以给人一种直观的感受。 一、准备   首先caffe的python接口当然是必备的了,还没有生成python接口的同学可以参照我的上一篇博客来生成。    然后是需要安装protobuf的python接口,...

2016-10-19 15:14:16

阅读数:2444

评论数:0

GANs学习系列(5): 生成式对抗网络Generative Adversarial Networks

【前言】      本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展。作者按照GAN主干论文、GAN应用性论文、GAN相关论文分类整理了45篇近两年的论文,着重梳理了主干论...

2016-10-17 18:43:53

阅读数:15243

评论数:1

GANs学习系列(4):对抗样本和对抗网络

前言:本文转载lancezhange 的博文《对抗样本和对抗网络》,文章介绍了对抗样本的概念和相关文献,并且进一步介绍了生成式对抗网络(Generative Adversarial Nets, GAN)。     所谓对抗 样本是指将实际样本略加扰动而构造出的合成样本,对该样本,分类器非...

2016-10-17 18:29:36

阅读数:2363

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭