深度学习中的数学与技巧(6): 详解协方差与协方差矩阵计算

协方差的定义

 

对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来。网上值得参考的资料也不多,这里用一个例子说明协方差矩阵是怎么计算出来的吧。

记住,X、Y是一个列向量,它表示了每种情况下每个样本可能出现的数。比如给定

则X表示x轴可能出现的数,Y表示y轴可能出现的。注意这里是关键,给定了4个样本,每个样本都是二维的,所以只可能有X和Y两种维度。所以

 

 

用中文来描述,就是:

协方差(i,j)=(第i列的所有元素-第i列的均值)*(第j列的所有元素-第j列的均值)

这里只有X,Y两列,所以得到的协方差矩阵是2x2的矩阵,下面分别求出每一个元素:

       所以,按照定义,给定的4个二维样本的协方差矩阵为:

 

    

用matlab计算这个例子

z=[1,2;3,6;4,2;5,2]

cov(z)

ans =

    2.9167   -0.3333

   -0.3333    4.0000

可以看出,matlab计算协方差过程中还将元素统一缩小了3倍。所以,协方差的matlab计算公式为:

    协方差(i,j)=(第i列所有元素-第i列均值)*(第j列所有元素-第j列均值)/(样本数-1)

       下面在给出一个4维3样本的实例,注意4维样本与符号X,Y就没有关系了,X,Y表示两维的,4维就直接套用计算公式,不用X,Y那么具有迷惑性的表达了。

 

 常见的4维样本的计算如下:

 

    

                

        (3)与matlab计算验证

                     Z=[1 2 3 4;3 4 1 2;2 3 1 4]

                     cov(Z)

                     ans =

                          1.0000    1.0000   -1.0000   -1.0000

                          1.0000    1.0000   -1.0000   -1.0000

                         -1.0000   -1.0000    1.3333    0.6667

                          -1.0000   -1.0000    0.6667    1.3333

       可知该计算方法是正确的。我们还可以看出,协方差矩阵都是方阵,它的维度与样本维度有关(相等)。参考2中还给出了计算协方差矩阵的源代码,非常简洁易懂,在此感谢一下!

 

参考:

[1] http://en.wikipedia.org/wiki/Covariance_matrix

[2] http://www.cnblogs.com/cvlabs/archive/2010/05/08/1730319.html

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值