最全 自动驾驶数据集 (11/4号已更新)

自动驾驶是一个快速发展的行业,它融合了人工智能、机器学习、传感器技术、高精度地图和先进的计算平台等多种技术。技术方面,自动驾驶汽车依赖于先进的传感器、如激光雷达、摄像头、毫米波雷达等,以及强大的计算平台来处理大量数据,自动驾驶数据集是训练和验证自动驾驶系统的关键资源,它提供了丰富的场景和条件,使算法能够学习和适应复杂的真实世界驾驶环境。

一、研究背景

自动驾驶技术的发展需要大量的数据来训练和优化算法,以识别和理解道路环境,从而做出正确的决策和行动。数据集的建设对于自动驾驶技术的发展至关重要,它们提供了丰富的训练样本,包括车辆、行人、交通标志等目标信息 。

二、研究意义

数据集在自动驾驶技术的研发中扮演着至关重要的角色。它们不仅为算法的训练提供了丰富的素材,还促进了算法的不断优化与迭代。通过不断地训练与测试,自动驾驶系统能够更加准确地识别道路场景中的各类目标,从而做出更加精准的决策 。

三、研究方法

自动驾驶数据集通常包括多种类型的传感器数据,如摄像头、激光雷达(LiDAR)、GPS、IMU等,以及这些传感器数据的同步和融合问题。研究方法涵盖了数据的采集、处理、标注以及用于训练深度学习模型的算法开发。此外,还包括对数据集的评估和优化,确保数据的质量和多样性 。

四、应用场景

自动驾驶数据集在多个应用场景中发挥作用,包括但不限于:

  1. 感知系统训练:用于训练自动驾驶车辆的环境感知系统,包括物体检测、语义分割等。

  2. 预测和规划:用于预测其他车辆和行人的行为,以及规划自动驾驶车辆的行驶路径。

  3. 仿真测试:在虚拟环境中测试自动驾驶算法,以确保其在真实世界中的安全性和可靠性。

  4. 算法评估:提供标准化的测试基准,用于评估和比较不同自动驾驶算法的性能 。

  5. 仿真和虚拟现实:数据集可以用于创建高保真的仿真环境,用于在没有实际车辆的情况下测试自动驾驶算法。

此外,自动驾驶数据集还涉及到多模态数据融合、3D点云处理、长期自治等高级研究领域,这些都是推动自动驾驶技术进步的关键因素

数据集:AIDOVECL|自动驾驶数据集|车辆图像识别数据集

  • 创建时间:2024-11-01

  • 链接地址:AIDOVECL|自动驾驶数据集|车辆图像识别数据集

  • 数据集介绍:AIDOVECL数据集由伊利诺伊大学厄巴纳-香槟分校创建,是一个AI生成的车辆图像数据集,旨在解决眼水平分类和定位问题。数据集包含超过15000张AI生成的车辆图像,这些图像通过检测和裁剪手动选择的种子图像生成,并使用高级外绘技术模拟真实世界条件。数据集的创建过程包括车辆检测、图像裁剪、外绘和质量评估,确保视觉保真度和上下文相关性。该数据集主要应用于自动驾驶、交通分析和城市规划领域,旨在提高机器学习模型在多样化操作场景下的分类和定位性能。

数据集:Acti|自动驾驶数据集|网络安全数据集

  • 创建时间:2024-10-19

  • 链接地址:Acti|自动驾驶数据集|网络安全数据集

  • 数据集介绍:Acti数据集由北京航空航天大学创建,专注于挖掘自动驾驶车辆网络安全威胁情报的实体及其关联。该数据集包含908份真实的汽车网络安全报告,涵盖3678个句子、8195个安全实体和4852个语义关系。数据集的创建过程包括从国家漏洞数据库和特定车辆威胁情报平台收集数据,并通过BIOES联合标注策略进行标注。Acti数据集主要应用于汽车网络安全威胁情报建模,旨在通过知识提取技术从大量网络安全数据中获取有价值信息,以实现主动安全防御。

数据集:Dynamic Human Benchmarks|自动驾驶数据集|安全评估数据集

  • 创建时间:2024-10-11

  • 链接地址:Dynamic Human Benchmarks|自动驾驶数据集|安全评估数据集

  • 数据集介绍:动态人类基准数据集由Waymo LLC创建,用于评估自动驾驶系统(ADS)的性能。该数据集包含超过2000万英里的Waymo乘客专用(RO)运营数据,覆盖美国三个县。数据集通过警察报告的碰撞数据和车辆行驶里程(VMT)数据生成,旨在调整ADS与人类驾驶在空间和时间分布上的差异。创建过程涉及对地理和时间因素的精细调整,以确保基准的公平性和准确性。该数据集主要应用于自动驾驶系统的安全评估,旨在解决现有基准在地理和时间分布上的不匹配问题。

数据集:MMDVS-LF|自动驾驶数据集|深度学习数据集

  • 创建时间:2024-09-26

  • 链接地址:MMDVS-LF|自动驾驶数据集|深度学习数据集

  • 数据集介绍:MMDVS-LF数据集,由奥地利维也纳技术大学(Technische Universität Wien,简称TU Wien)的CPS研究团队精心打造,是首个集成了动态视觉传感器(DVS)记录、RGB视频、里程计和惯性测量单元(IMU)数据的多模态数据集。该数据集旨在推动深度学习算法的发展,特别是在利用DVS数据特性方面。数据集采集自小型标准化车辆,执行简化环境中的循线任务,同时记录了驾驶员的眼动和人口统计数据,为自动驾驶系统和控制应用的创新提供了丰富的数据资源。数据集内容丰富,包含约401GB的原始数据,并生成了不同分辨率和频率的数据集。所有生成的数据集压缩后大小均低于15GB,涵盖了DVS时间表面和事件帧数据、IMU测量和驾驶输入。数据集的创建过程涉及精确的记录程序和处理流程,以同步和对齐不同的数据模态,并采用了缩小DVS事件数据的缩放方法论。MMDVS-LF数据集的应用领域广泛,不仅适用于自动驾驶系统的开发,还能支持深度学习算法的研究,尤其是在事件基础视觉领域。此外,独特的眼动数据还允许通过比较人类注意力来验证人工神经网络的性能。

数据集:SUP-NeRF-ECCV2024|自动驾驶数据集|计算机视觉数据集

数据集:SpaRe|神经渲染数据集|自动驾驶数据集

  • 创建时间:2024-09-23

  • 链接地址:SpaRe|神经渲染数据集|自动驾驶数据集

  • 数据集介绍:SpaRe数据集是由华为诺亚方舟实验室开发,专门用于稀疏视角神经渲染的基准测试。该数据集包含102个精心挑选的合成场景,每个场景有高达64个相机视角和7种光照配置,分辨率为1600×1200。数据集的创建过程模拟了DTU数据集的设置,确保了相机姿态和光照位置的精确性。SpaRe数据集旨在解决稀疏视角下的神经渲染问题,适用于自动驾驶、增强现实和资源受限环境等实际应用场景。

数据集:HS3-Bench|自动驾驶数据集|高光谱图像数据集

  • 创建时间:2024-09-17

  • 链接地址:HS3-Bench|自动驾驶数据集|高光谱图像数据集

  • 数据集介绍:HS3-Bench是由科布伦茨大学的计算视觉研究所创建的一个用于驾驶场景中高光谱语义分割的基准数据集。该数据集整合了三个现有的高光谱图像数据集(HyKo2、HCV2、HSI-Drive),共包含2453张图像,覆盖了从城市到乡村的多种驾驶场景。数据集的创建过程包括对图像进行标注和标准化评估指标的制定。HS3-Bench主要应用于自动驾驶和场景理解领域,旨在评估和提升高光谱图像在语义分割任务中的性能。

数据集:OptimusPrime_risk_dataset|自动驾驶数据集|风险预测数据集

数据集:Intelligent Driving Knowledge Base (IDKB)|自动驾驶数据集|知识库

  • 创建时间:2024-09-05

  • 链接地址:Intelligent Driving Knowledge Base (IDKB)|自动驾驶数据集|知识库

  • 数据集介绍:智能驾驶知识库(IDKB)是由上海科技大学和中国香港中文大学共同创建的,旨在为自动驾驶领域提供专业和系统的驾驶知识。该数据集包含超过一百万条数据,涵盖了15个国家的驾驶手册、理论测试数据和模拟道路测试数据,涉及9种语言和4种车辆类型。数据集的创建过程包括从互联网收集驾驶手册和测试问题,以及使用CARLA模拟器生成实际道路场景数据。IDKB的应用领域主要集中在提升大型视觉语言模型(LVLMs)在自动驾驶中的可靠性和安全性,通过提供结构化的驾驶知识数据,帮助模型更好地理解和应用驾驶规则和技能。

数据集:RoboSense|自动驾驶数据集|障碍物检测数据集

  • 更新时间:2024-08-28

  • 链接地址:RoboSense|自动驾驶数据集|障碍物检测数据集

  • 数据集介绍:RoboSense数据集由上海交通大学和SenseAuto研究共同创建,专注于低速自动驾驶车辆的近场场景理解。该数据集包含超过133,000帧同步数据,覆盖7,600多个时间序列,标注了140万个3D边界框和轨迹ID。数据集通过多种传感器(摄像头、激光雷达和鱼眼镜头)收集,确保了全方位的视角覆盖。创建过程中,数据集在多种场景下进行了采集和标注,特别关注了近距离障碍物的检测和跟踪。RoboSense数据集的应用领域主要集中在自动驾驶技术的研究,特别是在低速环境下的障碍物感知和预测任务。

数据集:ISETHDR|自动驾驶数据集|图像处理数据集

  • 创建时间:2024-08-22

  • 链接地址:ISETHDR|自动驾驶数据集|图像处理数据集

  • 数据集介绍:ISETHDR数据集由斯坦福大学和福特汽车公司共同创建,包含2000个模拟高动态范围驾驶场景的光组。每个光组包括四个光谱辐射图、深度图和实例分割数据,用于模拟不同光照条件下的驾驶场景。数据集的创建过程基于物理学原理的端到端软件模拟,旨在通过模拟真实的光学和传感器系统来评估和优化HDR传感器设计。该数据集主要应用于自动驾驶车辆的图像系统设计,以解决在复杂光照条件下获取高质量图像的挑战。

数据集:InScope|自动驾驶数据集|3D感知数据集

  • 创建时间:2024-07-31

  • 链接地址:InScope|自动驾驶数据集|3D感知数据集

  • 数据集介绍:InScope数据集由中山大学开发,专注于解决基础设施到基础设施(I2I)协同感知中的遮挡问题。该数据集通过在基础设施侧战略部署多位置的激光雷达(LiDAR)系统,捕捉了20天的数据,包含303条跟踪轨迹和187,787个3D边界框。数据集的创建旨在通过多源数据融合、数据域转移和3D多对象跟踪等任务,提升自动驾驶车辆在复杂交通环境中的感知能力,特别是在处理遮挡、小尺寸和远距离对象的检测与跟踪方面。

数据集:McPed|自动驾驶数据集|姿态估计数据集

  • 创建时间:2024-07-25

  • 链接地址:McPed|自动驾驶数据集|姿态估计数据集

  • 数据集介绍:我们提出一个用于自动驾驶的多模态跨视图姿态估计数据集,并展示了其融合过程和结果。数据集包含八个文件集,涵盖城市和非城市场景的示例。

数据集:Raindrop Clarity|图像处理数据集|自动驾驶数据集

  • 创建时间:2024-07-24

  • 链接地址:Raindrop Clarity|图像处理数据集|自动驾驶数据集

  • 数据集介绍:Raindrop Clarity数据集由新加坡国立大学、中国科学技术大学和电子科技大学共同创建,是一个专注于白天和夜晚雨滴去除的大规模真实世界数据集。该数据集包含15,186对/三元组的高质量图像,包括5,442张白天雨滴图像和9,744张夜晚雨滴图像。数据集的创建过程涉及使用多种摄像设备在不同条件下捕捉雨滴图像,确保了数据的多樣性和高质量。Raindrop Clarity数据集主要应用于监控、自动驾驶汽车、物体检测等领域,旨在解决雨滴对视觉系统的影响问题,提高图像处理的准确性和效率。

数据集:OpenLiDAR Dataset|自动驾驶数据集|3D物体检测数据集

数据集:MAN TruckScenes Dataset|自动驾驶数据集|卡车研究数据集

数据集:WayveScenes101|自动驾驶数据集|新视角合成数据集

  • 创建时间:2024-07-11

  • 链接地址:WayveScenes101|自动驾驶数据集|新视角合成数据集

  • 数据集介绍:WayveScenes101数据集由Wayve机构创建,专注于自动驾驶领域的新视角合成技术。该数据集包含101个多样化的驾驶场景,每个场景20秒,总计101,000张图像,涵盖多种环境条件和驾驶情况。数据集的创建过程中,使用了COLMAP技术获取相机姿态,并提供了详细的场景元数据。该数据集主要用于评估和提升自动驾驶场景中的新视角合成模型的性能,特别是在动态和复杂环境下的重建能力。

数据集:RoBus|城市设计数据集|自动驾驶数据集

  • 创建时间:2024-07-11

  • 链接地址:RoBus|城市设计数据集|自动驾驶数据集

  • 数据集介绍:RoBus数据集是由浙江大学开发的,专注于可控道路网络和建筑布局生成的多模态数据集。该数据集包含72,400个配对样本,覆盖全球约80,000平方公里,格式包括图像、图形和文本。数据集的创建过程涉及从OpenStreetMap收集原始数据,并通过预处理和生成管道进行处理。RoBus数据集主要应用于城市设计、多媒体游戏和自动驾驶模拟等领域,旨在解决自动化3D城市生成中的数据驱动方法的挑战。

数据集:Stereo Image Dataset (SID)|自动驾驶数据集|恶劣环境图像数据集

  • 创建时间:2024-07-06

  • 链接地址:Stereo Image Dataset (SID)|自动驾驶数据集|恶劣环境图像数据集

  • 数据集介绍:Stereo Image Dataset (SID) 是由密歇根大学迪尔伯恩分校电气与计算机工程系创建的大型立体图像数据集,专门用于自动驾驶在恶劣条件下的研究。该数据集包含27个序列,总计超过178k立体图像对,涵盖从晴朗天空到夜间大雪等多种天气和光照条件。数据集的创建过程使用了ZED立体相机,记录了详细的天气、时间和道路条件注释,以及相机镜头污染的实例。SID旨在支持高级感知算法的开发和测试,特别是在现有数据集中未充分代表的条件下,如雪和雨。该数据集的应用领域包括自动驾驶车辆和高级驾驶辅助系统,旨在提高这些系统在各种天气和光照条件下的可靠性和一致性。

数据集:RCV_uwb_dataset|UWB定位数据集|自动驾驶数据集

  • 创建时间:2024-07-04

  • 链接地址:RCV_uwb_dataset|UWB定位数据集|自动驾驶数据集

  • 数据集介绍:RCV_uwb_dataset由仁荷大学航空航天工程学院创建,专注于分析UWB定位中相对姿态的影响。该数据集包含六个序列,每个序列设计用于评估不同相对姿态参数对UWB测距的影响。数据集通过高精度的运动捕捉系统收集,结合了立体视觉和惯性传感器数据,旨在为机器人和自动驾驶领域的UWB定位研究提供支持,特别是在解决相对姿态导致的测距误差问题上。

数据集:isp-uv-es/IPL-Cityscapes-LuminanceContrasts|自动驾驶数据集|图像处理

  • 创建时间:2024-06-27

  • 链接地址:isp-uv-es/IPL-Cityscapes-LuminanceContrasts|自动驾驶数据集|图像处理数据集

  • 数据集介绍:IPL-CityscapesLuminanceContrasts数据集是一个经过亮度与对比度控制的修改版Cityscapes数据集,专门用于自动驾驶场景的语义分割任务。数据集包含100张Cityscapes图像及其对应的分割掩码,修改后的图像根据修改的彩色对比度分为11个子文件夹,总大小为1 Gb。

数据集:Base de Datos para Conducción Autónoma|自动驾驶数据集|传感器数据

数据集:rethinlab/Bench2Drive|自动驾驶数据集|算法评估数据集

  • 更新时间:2024-05-03

  • 链接地址:rethinlab/Bench2Drive|自动驾驶数据集|算法评估数据集

  • 数据集介绍:Bench2Drive是一个专为评估闭环端到端自动驾驶算法的基准,它通过40个交互场景和200个短路线来全面测试自动驾驶系统的能力。数据集包含10000个多样化的标注视频片段,用于公平比较不同算法。目前,已发布1000个视频片段,每个片段都详细标注了场景、城镇、路线和天气信息。

数据集:Cityscapes|自动驾驶数据集|实时语义分割数据集

  • 创建时间:2024-04-25

  • 链接地址:Cityscapes|自动驾驶数据集|实时语义分割数据集

  • 数据集介绍:CitySeg/MOP数据集基于Cityscapes数据集,专门为实时语义分割设计,包含15个多目标优化问题。该数据集用于评估模型在精度、推理速度和硬件特定考虑等多目标上的表现。数据集的创建过程涉及将实时语义分割任务转换为标准的多目标优化问题,并通过EvoXBench平台提供与多种编程语言的无缝接口。CitySeg/MOP数据集主要应用于自动驾驶等实时应用场景,旨在解决模型设计中多目标优化的挑战。

数据集:OpenDriveLab/LightwheelOcc|自动驾驶数据集|合成数据数据集

  • 更新时间:2024-04-09

  • 链接地址:OpenDriveLab/LightwheelOcc|自动驾驶数据集|合成数据数据集

  • 数据集介绍:LightwheelOcc是由Lightwheel AI开发的一个公开可用的自动驾驶合成数据集,包含40,000帧和相应的地面真实标签,适用于多种任务。该数据集涵盖了多样的地形、天气、车辆类型、植被和道路标记,旨在通过生成AI和模拟技术提供3D、物理上真实且可泛化的合成数据解决方案,以推动计算机视觉、自动驾驶和合成数据的研究。

数据集:OpenDriveLab/OpenDV-YouTube-Language|自动驾驶数据集|视频分析

  • 更新时间:2024-03-28

  • 链接地址:OpenDriveLab/OpenDV-YouTube-Language|自动驾驶数据集|视频分析数据集

  • 数据集介绍:OpenDV-YouTube数据集包含自动驾驶领域的语言注释,主要包括上下文和命令。命令字段可以转换为自然语言,上下文字段描述视频片段中心帧的内容,由BLIP2生成。数据集建议在Linux环境下处理,以避免Windows可能出现的路径问题。

数据集:LightwheelOcc|自动驾驶数据集|合成数据数据集

  • 创建时间:2024-03-20

  • 链接地址:LightwheelOcc|自动驾驶数据集|合成数据数据集

  • 数据集介绍:LightwheelOcc由Lightwheel AI与OpenDriveLab共同开发,是一个公开可用的自动驾驶合成数据集。该数据集包含40,000帧及其对应的各种任务的真值标签,是一个概括性数据集,覆盖了多种地区地形、天气模式、车辆类型、植被和道路标记。Lightwheel AI利用生成式AI和仿真技术,为自动驾驶和具体化AI提供3D、物理真实且可概括的合成数据解决方案。通过发布LightwheelOcc,我们旨在推进计算机视觉、自动驾驶和合成数据领域的研究。

数据集:isp-uv-es/IPL-Cityscapes-LuminanceContrasts|自动驾驶数据集|图像处理

  • 创建时间:2024-03-13

  • 链接地址:AVM-SLAM Dataset|自动驾驶数据集|SLAM数据集

  • 数据集介绍:为了验证提出的AVM-SLAM系统,在一个220m×110m的地下车库中进行了测试,该车库拥有超过430个停车位。测试车辆装备了四个环视鱼眼摄像头、四个轮速编码器和一个IMU,所有设备均已同步和离线校准。数据集包括四个鱼眼图像序列、一个鸟瞰图(BEV)图像序列、四组轮速编码器数据和一个IMU数据集。该数据集将有益于SLAM领域的进一步研究,特别是对于地下车库中自动驾驶车辆的定位。

数据集:Elektra自动驾驶数据集|自动驾驶数据集|机器学习数据集

数据集:Lyft Level 5 自动驾驶数据集|自动驾驶数据集|数据采集数据集

  • 更新时间:2024-03-04

  • 链接地址:Lyft Level 5 自动驾驶数据集|自动驾驶数据集|数据采集数据集

  • 数据集介绍:Lyft L5 自动驾驶数据集是由 Lyft 公司提供的 L5 级别自动驾驶数据集,目前仅提供训练集的下载。该数据集包含高质量语义地图,提供对目标的存在和移动的检测。 该数据集提供超过 4000 条道路、197 条人行横道、60 个 stop sign 和 54 个停车区域等地图信息。此数据集格式为 nuScenes,数据通过两类不同版本的汽车进行采摘,两类实验车均搭载 7 个摄像头和 3 个 LiDARS,但摄像头型号和 LiDARS 种类不同。 该数据集应用前景广泛,对于未来的自动化驾驶有推动作用。

数据集:自动驾驶数据集NuScenes|自动驾驶数据集|多模态感知数据集

  • 更新时间:2024-03-04

  • 链接地址:自动驾驶数据集NuScenes|自动驾驶数据集|多模态感知数据集

  • 数据集介绍:nuScenes数据集 是自动驾驶公司nuTonomy建立的大规模自动驾驶数据集,该数据集不仅包含了Camera和Lidar,还记录了雷达数据,是我所知道的唯一一个有雷达数据的数据集。 这个数据集由1000个场景组成(即scenes,这就是该数据集名字的由来),每个scenes长度为20秒,包含了各种各样的情景。在每一个scenes中,有40个关键帧(key frames),也就是每秒钟有2个关键帧,其他的帧为sweeps。关键帧经过手工的标注,每一帧中都有了若干个annotation,标注的形式为bounding box。不仅标注了大小、范围、还有类别、可见程度等等。这个数据集不久前发布了一个teaser版本(包含100个scenes),正式版(1000个scenes)的数据要2019年发布。 这个数据集在sample的数量上、标注的形式上都非常好,记录了车的自身运动轨迹(相对于全局坐标),包含了非常多的传感器,可以用来实现更加智慧的识别算法和感知融合算法。

数据集:autonomous_driving_datasets|自动驾驶数据集|数据集数据集

  • 创建时间:2024-02-07

  • 链接地址:autonomous_driving_datasets|自动驾驶数据集|数据集数据集

  • 数据集介绍:该仓库存储了论文《自动驾驶数据集综述:统计、标注质量及未来展望》中提到的数据集,并提供了相关的代码。数据集主要用于自动驾驶领域的研究和开发,包括感知、预测、规划和控制等多个方面。

数据集:LaMPilot-Bench|自动驾驶数据集|语言模型数据集

数据集:SCTrans|自动驾驶数据集|仿真测试数据集

数据集:自动驾驶计算机视觉算法评测数据集|自动驾驶数据集|计算机视觉数据集

  • 创建时间:2023-09-15

  • 链接地址:自动驾驶计算机视觉算法评测数据集|自动驾驶数据集|计算机视觉数据集

  • 数据集介绍:该数据集主要面向自动驾驶研究,其中包括激光点云、彩色图像、灰度图像、GPS、IMU等多种模态数据的采集和处理,解决自动驾驶的感知和规划缺乏真实世界数据的问题。基于wagon标准工作站,两个高分辨率彩色和灰色视频相机、360度高精度的雷达激光扫描仪和GPS定位系统等部署于真实车辆,并通过在真实驾驶环境中采集了图像、定位信息、激光点云等信息。总的数据量达到180GB左右。

数据集:自动驾驶专用车道及货车队列第三方测评数据|自动驾驶数据集|车队列测试

数据集:TUM Traffic Dataset|自动驾驶数据集|交通数据数据集

  • 创建时间:2023-07-26

  • 链接地址:TUM Traffic Dataset|自动驾驶数据集|交通数据数据集

  • 数据集介绍:TUM Traffic Dataset基于德国慕尼黑附近3公里长的Providentia自动驾驶测试场的路边传感器数据。数据集包括匿名化和高精度时间戳的多模态传感器和对象数据,覆盖了多种交通情况。提供了来自高架桥的相机和激光雷达帧,以及相应的带有3D边界框和轨迹ID的标记对象。数据集包含以下子集:TUMTraf A9高速公路数据集、TUMTraf交叉口数据集、TUMTraf事件数据集、TUMTraf V2X协作感知数据集。

数据集:Comma.ai 自动驾驶视频数据集|自动驾驶数据集|计算机视觉数据集

数据集:WoodScape 自动驾驶鱼眼数据集|自动驾驶数据集|计算机视觉数据集

  • 更新时间:2023-05-15

  • 链接地址:WoodScape 自动驾驶鱼眼数据集|自动驾驶数据集|计算机视觉数据集

  • 数据集介绍:WoodScape 是一个自动驾驶鱼眼图像数据集,该数据集包括四台环绕视图相机和九项任务(包括分割、深度估计、 3D bounding box 检测和 soiling detection),在实例级别为 1 万多张图像提供了 40 类的语义标注,为超过 10 万张图像提供了其他任务的标注

数据集:BDD100K 自动驾驶图像数据集|自动驾驶数据集|图像识别数据集

数据集:Tsinghua-Tencent 100K Tutorial|交通标志识别数据集|图像识别数据集

  • 创建时间:2022-11-18

  • 链接地址:Tsinghua-Tencent 100K Tutorial|交通标志识别数据集|图像识别数据集

  • 数据集介绍:尽管在交通标志检测和分类领域取得了可喜的成果,但很少有作品为现实世界的图像同时提供这两个任务的解决方案。我们为这个问题做出了两个贡献。首先,我们从100000腾讯街景全景图创建了一个大型交通标志基准,超越了以前的基准。它提供包含30000交通标志实例的100000图像。这些图像涵盖了照度和天气条件的大变化。基准中的每个交通标志都带有类标签,其边界框和像素掩码。我们把这个基准叫清华-腾讯100K

数据集:Mapillary Traffic Sign Dataset|计算机视觉数据集|交通标志识别数据集

  • 创建时间:2022-11-17

  • 链接地址:Mapillary Traffic Sign Dataset|计算机视觉数据集|交通标志识别数据集

  • 数据集介绍:Mapillary交通标志数据集是世界上最大,最多样化的公共交通标志数据集,用于教学机器检测和识别交通标志。该数据集由来自世界各地的100,000图像组成,从天气和时间到摄像头传感器和视点的所有内容都具有很高的可变性。已对300多个不同的交通标志类别进行了验证和注释,从而在图像中产生了320,000多个标记的交通标志。使用我们的计算机视觉技术,人类已经对52,000多个图像进行了充分的验证和注释,其余图像部分进行了注释。

免费数据集网站:遇见数据集

遇见数据集-让每个数据集都被发现,让每一次遇见都有价值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值