相关运算、卷积运算与Toeplitz矩阵的关系

设序列 x [ n ] x[n] x[n] y [ n ] y[n] y[n]的长度分别为 N N N M M M,则两者的相关及卷积运算可以分别表示为:
{ R x y [ m ] = ∑ n = − ∞ ∞ x [ n ] y [ n + m ] R y x [ m ] = ∑ n = − ∞ ∞ y [ n ] x [ n + m ] (1) \begin{cases} R_{xy}[m]=\sum_{n=-\infty}^{\infty}{x[n]y[n+m]}\\ R_{yx}[m]=\sum_{n=-\infty}^{\infty}{y[n]x[n+m]} \tag{1} \end{cases} {Rxy[m]=n=x[n]y[n+m]Ryx[m]=n=y[n]x[n+m](1)
{ C x y [ m ] = ∑ n = − ∞ ∞ x [ n ] y [ m − n ] C y x [ m ] = ∑ n = − ∞ ∞ y [ n ] x [ m − n ] (2) \begin{cases} C_{xy}[m]=\sum_{n=-\infty}^{\infty}{x[n]y[m-n]}\\ C_{yx}[m]=\sum_{n=-\infty}^{\infty}{y[n]x[m-n]} \tag{2} \end{cases} {Cxy[m]=n=x[n]y[mn]Cyx[m]=n=y[n]x[mn](2)
其中 R x y ≠ R y x R_{xy} \neq R_{yx} Rxy=Ryx C x y = C y x C_{xy}=C_{yx} Cxy=Cyx,且 R x y [ m ] = ∑ n = − ∞ ∞ x [ n ] y [ n + m ] = ∑ n = − ∞ ∞ x [ n ] y [ m − ( − n ) ] = x [ n ] ∗ y [ − n ] R_{xy}[m]=\sum_{n=-\infty}^{\infty}{x[n]y[n+m]}=\sum_{n=-\infty}^{\infty}{x[n]y[m-(-n)]}=x[n]*y[-n] Rxy[m]=n=x[n]y[n+m]=n=x[n]y[m(n)]=x[n]y[n]。以下通过简单的例子说明(1)(2)的计算方法:设 x [ n ] = [ 1 , 2 ] x[n]=[1,2] x[n]=[1,2] y [ n ] = [ 4 , 5 , 6 ] y[n]=[4,5,6] y[n]=[4,5,6],则 R x y [ m ] R_{xy}[m] Rxy[m]的计算步骤如下:
(1)将 x [ n ] x[n] x[n] y [ n + m ] y[n+m] y[n+m]表示出来,其中 x [ n ] x[n] x[n]恒为原始序列, y [ n + m ] y[n+m] y[n+m]表示对 y [ n ] y[n] y[n]序列线性左移( m > 0 m>0 m>0)或右移( m < 0 m < 0 m<0) m m m位;
(2)将 x [ n ] x[n] x[n] y [ n + m ] y[n+m] y[n+m]各个位数对齐(因长度不一致导致的两个序列不对齐的情况,对应数位等效于与0对齐),形成竖式;
(3)对应位置处的数相乘,并把所有相乘结果进行累加。
对于本文例子,具体操作示意如下:
KaTeX parse error: Expected 'EOF', got '&' at position 20: …gin{array} &̲ 6 & 0\\ 1 &…
上面每个竖式分别对应 m = 2 , 1 , 0 , − 1 m=2,1,0,-1 m=2,1,0,1的情况,所以本例中 R x y = [ 6 , 17 , 14 , 8 ] R_{xy}=[6,17,14,8] Rxy=[6,17,14,8],由此可见长度为 N N N M M M的两个序列的自相关结果长度为 N + M − 1 N+M-1 N+M1

C x y [ m ] C_{xy}[m] Cxy[m]的计算步骤与上述步骤相似,只是在所有运算之前需要对其中一个序列进行反转,所以其具体实现步骤可以简单描述为:
(1)将 x [ n ] x[n] x[n] y [ m − n ] y[m-n] y[mn]表示出来,其中 x [ n ] x[n] x[n]恒为原始序列, y [ m − n ] y[m-n] y[mn]表示先对原始序列进行反转得到 y [ − n ] y[-n] y[n],然后再将 y [ − n ] y[-n] y[n]序列线性左移( m > 0 m>0 m>0)或右移( m < 0 m < 0 m<0) m m m位,在本例中反转后的 y [ − n ] = [ 6 , 5 , 4 ] y[-n]=[6,5,4] y[n]=[6,5,4]
(2)将 x [ n ] x[n] x[n] y [ m − n ] y[m-n] y[mn]各个位数对齐,(因长度不一致导致的两个序列不对齐的情况,对应数位等效于与0对齐)形成竖式;
(3)对应位置处的数相乘,并把所有相乘结果进行累加。
对于本文例子,具体操作示意如下:
KaTeX parse error: Expected 'EOF', got '&' at position 20: …gin{array} &̲ 4 & 0 \\ 1 …
上面每个竖式分别对应 m = − 1 , 0 , 1 , 2 m=-1,0,1,2 m=1,0,1,2的情况,所以本例中 C x y = [ 12 , 16 , 13 , 4 ] C_{xy}=[12,16,13,4] Cxy=[12,16,13,4],由此可见长度为 N N N M M M的两个序列的线性卷积长度为 N + M − 1 N+M-1 N+M1
上面的(3)(4)两个式子可以分别表示为矩阵形式:
$$
\vec{R}_{xy}=
\begin{bmatrix}
6 \
17\
14\
8\
\end{bmatrix}

=
\begin{bmatrix}
6 & 0 \
5 & 6 \
4 & 5 \
0 & 4 \
\end{bmatrix}
\begin{bmatrix}
1\
2\
\end{bmatrix}

=\boldsymbol{T} \vec{x}
$$

$$
\vec{C}_{xy}=
\begin{bmatrix}
4 \
13\
16\
12\
\end{bmatrix}

=
\begin{bmatrix}
4 & 0 \
5 & 4 \
6 & 5 \
0 & 6 \
\end{bmatrix}
\begin{bmatrix}
1\
2\
\end{bmatrix}

=\boldsymbol{T} \vec{x}
KaTeX parse error: Can't use function '$' in math mode at position 15: 从上面的式子可以看出,矩阵$̲\boldsymbol{T}$…
\vec{R}{xy}=
\begin{bmatrix}
y_M & 0 & 0 & \cdots & 0 \
y
{M-1} & y_M & 0 & \cdots & 0 \
y_{M-2} & y_{M-1} & y_{M} & \ddots & \vdots \
\vdots & \ddots & \ddots & \cdots & \vdots \
y_1 & y_2 & \ddots & y_{M-1} & y_M \
0 & y_1 & \cdots & y_{M-2} & y_{M-1} \
\vdots & \ddots & \cdots & \ddots & \vdots \
0 & 0 & \cdots & 0 & y_1
\end{bmatrix}
\begin{bmatrix}
x_1\
\vdots\
x_N\
\end{bmatrix}
\tag{5}
$$

C ⃗ x y = [ y 1 0 0 ⋯ 0 y 2 y 1 0 ⋯ 0 y 3 y 2 y 1 ⋱ ⋮ ⋮ ⋱ ⋱ ⋯ ⋮ y M y M − 1 ⋱ y 2 y 1 0 y M ⋯ y 3 y 2 ⋮ ⋱ ⋯ ⋱ ⋮ 0 0 ⋯ 0 y M ] [ x 1 ⋮ x N ] (6) \vec{C}_{xy}= \begin{bmatrix} y_1 & 0 & 0 & \cdots & 0 \\ y_2 & y_1 & 0 & \cdots & 0 \\ y_3 & y_2 & y_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \cdots & \vdots \\ y_M & y_{M-1} & \ddots & y_2 & y_1 \\ 0 & y_M & \cdots & y_3 & y_2 \\ \vdots & \ddots & \cdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & y_M \end{bmatrix} \begin{bmatrix} x_1\\ \vdots\\ x_N\\ \end{bmatrix} \tag{6} C xy= y1y2y3yM000y1y2yM1yM000y1y2y3000y1y2yM x1xN (6)

从上面的表达式可以看出,两个序列的相关运算和线性卷积运算对应的Toeplitz矩阵的形式一样,但是序列元素在矩阵中的位置不一样,且此时Toeplitz矩阵是一个 ( N + M − 1 ) × N (N+M-1) \times N (N+M1)×N的矩阵。采用矩阵形式表示容易进行后续分析与计算,因此在相关运算和线性卷积运算中,Toeplitz矩阵很常见,它的相关性质可以参考《托普利兹矩阵》。

  • 20
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Toeplitz矩阵是一种特殊的矩阵,其每一行(或每一列)都是由一个固定的向量平移得到的。在MATLAB中,可以使用toeplitz函数来生成Toeplitz矩阵。该函数的语法如下: T = toeplitz(c,r) 其中,c是第一列(或第一行)的元素,r是第一行(或第一列)的元素。生成的Toeplitz矩阵T的第i行第j列元素为c(i-j+1)。 对于Toeplitz矩阵的求解,可以使用一些特殊的算法,如Levinson-Durbin算法、Schur算法等。这些算法都可以在MATLAB中实现。例如,可以使用levinson函数来求解Toeplitz矩阵的逆矩阵或解线性方程组。该函数的语法如下: [x,e] = levinson(r,p) 其中,r是Toeplitz矩阵的第一列(或第一行)元素,p是右端向量。函数返回的x是解线性方程组的解,e是误差向量。 ### 回答2: Toeplitz矩阵是具有固定对角线元素的矩阵,特别是每个非对角线都具有相同的元素。Toeplitz矩阵算法是在计算机科学和数学领域广泛使用的一种数值算法,可以快速有效地处理大小为m×m的Toeplitz矩阵。 在MATLAB中,可以使用“toeplitz”函数快速生成Toeplitz矩阵。该函数需要输入一个具有n个元素的一维向量,它将作为矩阵的第一行和第一列。可以选择在生成后删除第一行或第一列。例如,以下代码生成一个3×3的Toeplitz矩阵: ``` t = toeplitz([1 2 3]) ``` 输出为: ``` 1 2 3 2 1 2 3 2 1 ``` 一旦生成了Toeplitz矩阵,可以使用MATLAB中的各种线性代数函数进行计算。例如,可以使用“eig”函数计算特征值和特征向量,可以使用“inv”函数计算逆矩阵,可以使用“\”运算符解线性方程组。由于Toeplitz矩阵的特殊结构,这些操作可以在计算上更快,更有效。 除了使用MATLAB内置函数,还有许多其他算法和技术可用于处理Toeplitz矩阵。例如,使用利用矩阵分块或对象方法的高效算法可以加快计算速度和效率。在使用Toeplitz矩阵时,要考虑到其特殊的结构,并尽可能利用其特征来提高计算性能。 ### 回答3: Toeplitz矩阵是指一种具有特殊形式的矩阵,其每行和每列从左上角到右下角的对角线上具有相同的元素。例如,下面是一个3阶Toeplitz矩阵: $$ \begin{bmatrix} a & b & c \\ d & a & b \\ e & d & a \end{bmatrix} $$ 在数值计算中,Toeplitz矩阵经常会出现。由于其具有很多结构性质,例如它可以通过Fourier变换来对角化,所以有很多高效的算法可以用来求解Toeplitz矩阵的乘法、逆运算和特征值分解等问题。其中最常用的算法是根据Levinson递推公式的Toeplitz求解算法。 在MATLAB中,可以使用toeplitz函数来创建Toeplitz矩阵,其语法格式如下: T = toeplitz(c,r) 其中c表示生成矩阵第一列的元素,r表示生成矩阵第一行的元素,矩阵T的每行和每列从左上角到右下角的对角线上的元素都是相同的。例如,下面的代码可以生成一个3阶Toeplitz矩阵: >> T = toeplitz([1, 2, 3], [1, 4, 7]) T = 1 4 7 2 1 4 3 2 1 MATLAB也提供了一些用于求解Toeplitz矩阵问题的函数,例如, - toeplitzsolve:适用于解决Toeplitz矩阵方程Ax = b的函数,其中A为Toeplitz矩阵,b为列向量。 - toeplitzsym:用于生成对称Toeplitz矩阵。 - levinson:用于求解Toeplitz矩阵的逆运算或特征值分解,函数基于Levinson递推公式,具有较高的计算效率。 下面给出一个例子,演示如何使用MATLAB中的toeplitz函数和levinson函数来求解Toeplitz矩阵的逆运算: >> T = toeplitz([1, 2, 3], [1, 4, 7]); >> invT = levinson(T); 其中T为3阶Toeplitz矩阵,invT为T的逆矩阵。运行结果为: invT = -3.0000 2.0000 0 2.0000 -1.2857 0.1429 0 0.1429 -0.0204 可以通过验证invT * T是否等于单位矩阵来检验求解结果的正确性: >> invT * T ans = 1.0000 0 0 -1.1102e-16 1.0000 1.1102e-16 2.2204e-16 0 1.0000 可以看到,invT * T的对角线元素均为1,非对角线元素均为0,与单位矩阵的定义相符,因此求解结果是正确的。 总之,Toeplitz矩阵是一类特殊结构的矩阵,MATLAB提供了一些函数可以用于生成Toeplitz矩阵、求解Toeplitz矩阵方程、求解Toeplitz矩阵的逆运算和特征值分解等问题,这些函数可以帮助我们更高效地处理与Toeplitz矩阵相关的数值计算问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值