论文笔记GradNet: Gradient-Guided Network for Visual Object Tracking

1. 标题及来源

GradNet: Gradient-Guided Network for Visual Object Tracking

2. 阅读目的

1.  了解如何从梯度的角度更新模板

3. 领域

Object Trackinig

4. 拟解决的问题

1.  测试时模板固定,效果依赖于网络的通用匹配能力
2.  未利用目标或者背景簇的时序变化信息

5. 提出的方法

5.1 方法流程

在这里插入图片描述
该网络结构分为两个分支,上面一个分支用来生成和更新target,下面一个分支用来提取search region的特征

  1. 在模板帧中截取target,当前帧中截取search region
  2. 将target和search region输入到相同的网络的提取特征,分别记为 f z ( Z ) f_z(Z) fz(Z) f x ( X ) f_x(X) fx(X)
  3. 将target输出的特征图 f z ( Z ) f_z(Z) fz(Z)输入到子网U1(紫色块)得到初始模板,记为 β \beta β并计算loss
  4. β 和 f x ( X ) \beta和f_x(X) βfx(X)进行卷积操作,得到响应图

模板更新:

  1. 使用 β \beta β和真实标签Y计算loss,
  2. 将loss输入到子网络U2(橙色块)中执行一次反向传播,计算梯度,
  3. 将计算出来的梯度与 f z ( Z ) f_z(Z) fz(Z)求和,从而更新模板,记更新后的模板为 β ∗ \beta^* β在这里插入图片描述
    在这里插入图片描述

5.2 通用模板(template generation)

5.2.1 目的

训练时update branch会偏向于学习模板的外貌信息而不是梯度信息,所以提出template generation,使update branch学习梯度并且避免过拟合

5.2.2 方法详情

  1. 从不同的视频中(论文中是4)获取搜索区域(X),模板(Z),真实标签(Y)
  2. 使用update branch获取Z1(默认使用第一个图片对中的模板)的 β 1 \beta_1 β1 β 1 ∗ \beta_1^* β1
  3. 通过最小化loss更新update branch得到一个通用模板使其每次训练时都能在所有搜索区域上表现良好

详细流程参考下图
4.

5.3.3 结果

在这里插入图片描述
Ours表示训练的时候使用模板泛化,Ours-T表示训练的时候不使用模板泛化(template generation)。
直方图中值越大,则会更偏向于学习梯度。
在这里插入图片描述

6. 实验结果

注:该算法的实验结果与小于19年同期论文,例如SiamCasRPN,SiamRPN++,在性能方法只能与CVPR2018的SiamRPN相当,略高于SiamRPN

6.1 OTB2015实验结果

在这里插入图片描述

6.2 TC128实验结果

在这里插入图片描述

6.3 VOT2017实验结果

在这里插入图片描述

6.4 LaSOT实验结果

在这里插入图片描述

6.5 消融分析

在这里插入图片描述
Ours:w/o M:训练时不使用通用模板
Ours w/o MG:训练时不使用通用模板和梯度应用
Ours w/o U:没有模板更新
Ours w 2U:子网U1(紫色块)不共享参数
Ours-baseline:SiameseFC

在这里插入图片描述
第一行是搜索区域,第二行是使用了template generation后的score map,从图中可以发现,在其中会存在很多噪声,第三行是基于梯度更新后的模板,从图中可以发现在目标位置的响应值最高,第四行是没有使用template generation的score map,从图中可以发现在目标位置的响应值最高,但是会存在一些干扰,第五行是基于梯度更新后的模板,但是没有使用template generation,从图中可以发现,它的干扰明显减少,而且在物体附近的响应值也会很大。

7. 改进&存在的问题

  1. 从响应图中可以发现,算法的性能还是比较好的,但是和CVPR2019同期论文相比,它的性能远落后于它们,它的一些性能甚至只能和CVPR2018的SiameseRPN相当,这很奇怪

8. 可借鉴的点

  1. 基于梯度进行模板的更新
  2. template generation

9. 知识补充

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值