正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:
X∼N(μ,σ2),
则其概率密度函数为
正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ = 0,σ = 1的正态分布(见右图中绿色曲线)。
概率密度函数
正态分布的概率密度函数均值为μ 方差为σ2 (或标准差σ)是高斯函数的一个实例:
(请看指数函数以及π.)
如果一个随机变量X服从这个分布,我们写作 X ~ N(μ,σ2). 如果μ = 0并且σ = 1,这个分布被称为标准正态分布,这个分布能够简化为
右边是给出了不同参数的正态分布的函数图。
正态分布中一些值得注意的量:
- 密度函数关于平均值对称
- 平均值是它的众数(statistical mode)以及中位数(median)
- 函数曲线下68.268949%的面积在平均值左右的一个标准差范围内
- 95.449974%的面积在平均值左右两个标准差2σ的范围内
- 99.730020%的面积在平均值左右三个标准差3σ的范围内
- 99.993666%的面积在平均值左右四个标准差4σ的范围内
- 反曲点(inflection point)在离平均值的距离为标准差之处
伽玛分布
伽玛分布(Gamma Distribution)是统计学的一种连续概率函数。Gamma分布中的参数α称为形状参数(shape parameter),β称为尺度参数(scale parameter)。
Gamma的可加性
“无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。”